Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annig1p.0 |
|- .0. = ( 0g ` E ) |
8 |
|
ply1annig1p.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
|
ply1annig1p.k |
|- K = ( RSpan ` P ) |
10 |
|
ply1annig1p.g |
|- G = ( idlGen1p ` ( E |`s F ) ) |
11 |
|
minplyval.1 |
|- M = ( E minPoly F ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
minplyval |
|- ( ph -> ( M ` A ) = ( G ` Q ) ) |
13 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
14 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
15 |
5 14
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
16 |
15
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
17 |
1 2 3 13 16 6 7 8
|
ply1annidl |
|- ( ph -> Q e. ( LIdeal ` P ) ) |
18 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
19 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
20 |
18 19
|
lidlss |
|- ( Q e. ( LIdeal ` P ) -> Q C_ ( Base ` P ) ) |
21 |
17 20
|
syl |
|- ( ph -> Q C_ ( Base ` P ) ) |
22 |
15
|
simp3d |
|- ( ph -> ( E |`s F ) e. DivRing ) |
23 |
2 10 19
|
ig1pcl |
|- ( ( ( E |`s F ) e. DivRing /\ Q e. ( LIdeal ` P ) ) -> ( G ` Q ) e. Q ) |
24 |
22 17 23
|
syl2anc |
|- ( ph -> ( G ` Q ) e. Q ) |
25 |
21 24
|
sseldd |
|- ( ph -> ( G ` Q ) e. ( Base ` P ) ) |
26 |
12 25
|
eqeltrd |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |