Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
17 |
9 16
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
18 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
19 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
20 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
21 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
22 |
6 21
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
23 |
22
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
24 |
8 1 18 19 20 23
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
25 |
24 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
26 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } |
27 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
28 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
29 |
8 17 18 5 6 25 19 26 27 28
|
ply1annig1p |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( ( RSpan ` P ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
30 |
20
|
crnggrpd |
|- ( ph -> E e. Grp ) |
31 |
30
|
grpmndd |
|- ( ph -> E e. Mnd ) |
32 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
33 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
34 |
18
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
35 |
23 33 34
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
36 |
25
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
37 |
35 36
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
38 |
18 32 37
|
fldgensdrg |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) ) |
39 |
|
sdrgsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
40 |
|
subrgsubg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) ) |
41 |
19
|
subg0cl |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
42 |
38 39 40 41
|
4syl |
|- ( ph -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
43 |
18 32 37
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) |
44 |
2 18 19
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) /\ ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) -> ( 0g ` E ) = ( 0g ` L ) ) |
45 |
31 42 43 44
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` L ) ) |
46 |
45
|
sneqd |
|- ( ph -> { ( 0g ` E ) } = { ( 0g ` L ) } ) |
47 |
46
|
imaeq2d |
|- ( ph -> ( `' G " { ( 0g ` E ) } ) = ( `' G " { ( 0g ` L ) } ) ) |
48 |
13 47
|
eqtr4id |
|- ( ph -> Z = ( `' G " { ( 0g ` E ) } ) ) |
49 |
10
|
mpteq1i |
|- ( p e. U |-> ( ( O ` p ) ` A ) ) = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
50 |
11 49
|
eqtri |
|- G = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
51 |
8 17 18 20 23 25 19 26 50
|
ply1annidllem |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( `' G " { ( 0g ` E ) } ) ) |
52 |
48 51
|
eqtr4d |
|- ( ph -> Z = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
53 |
8 17 18 5 6 25 19 26 27 28 4
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
54 |
53
|
sneqd |
|- ( ph -> { ( M ` A ) } = { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) |
55 |
54
|
fveq2d |
|- ( ph -> ( ( RSpan ` P ) ` { ( M ` A ) } ) = ( ( RSpan ` P ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
56 |
29 52 55
|
3eqtr4d |
|- ( ph -> Z = ( ( RSpan ` P ) ` { ( M ` A ) } ) ) |