Metamath Proof Explorer


Theorem algextdeglem5

Description: Lemma for algextdeg . The subspace Z of annihilators of A is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
Assertion algextdeglem5 φ Z = RSpan P M A

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
17 9 16 eqtri P = Poly 1 E 𝑠 F
18 eqid Base E = Base E
19 eqid 0 E = 0 E
20 5 fldcrngd φ E CRing
21 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
22 6 21 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
23 22 simp2d φ F SubRing E
24 8 1 18 19 20 23 irngssv φ E IntgRing F Base E
25 24 7 sseldd φ A Base E
26 eqid q dom O | O q A = 0 E = q dom O | O q A = 0 E
27 eqid RSpan P = RSpan P
28 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
29 8 17 18 5 6 25 19 26 27 28 ply1annig1p φ q dom O | O q A = 0 E = RSpan P idlGen 1p E 𝑠 F q dom O | O q A = 0 E
30 20 crnggrpd φ E Grp
31 30 grpmndd φ E Mnd
32 5 flddrngd φ E DivRing
33 subrgsubg F SubRing E F SubGrp E
34 18 subgss F SubGrp E F Base E
35 23 33 34 3syl φ F Base E
36 25 snssd φ A Base E
37 35 36 unssd φ F A Base E
38 18 32 37 fldgensdrg φ E fldGen F A SubDRing E
39 sdrgsubrg E fldGen F A SubDRing E E fldGen F A SubRing E
40 subrgsubg E fldGen F A SubRing E E fldGen F A SubGrp E
41 19 subg0cl E fldGen F A SubGrp E 0 E E fldGen F A
42 38 39 40 41 4syl φ 0 E E fldGen F A
43 18 32 37 fldgenssv φ E fldGen F A Base E
44 2 18 19 ress0g E Mnd 0 E E fldGen F A E fldGen F A Base E 0 E = 0 L
45 31 42 43 44 syl3anc φ 0 E = 0 L
46 45 sneqd φ 0 E = 0 L
47 46 imaeq2d φ G -1 0 E = G -1 0 L
48 13 47 eqtr4id φ Z = G -1 0 E
49 10 mpteq1i p U O p A = p Base P O p A
50 11 49 eqtri G = p Base P O p A
51 8 17 18 20 23 25 19 26 50 ply1annidllem φ q dom O | O q A = 0 E = G -1 0 E
52 48 51 eqtr4d φ Z = q dom O | O q A = 0 E
53 8 17 18 5 6 25 19 26 27 28 4 minplyval φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 E
54 53 sneqd φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 E
55 54 fveq2d φ RSpan P M A = RSpan P idlGen 1p E 𝑠 F q dom O | O q A = 0 E
56 29 52 55 3eqtr4d φ Z = RSpan P M A