Metamath Proof Explorer


Theorem algextdeglem5

Description: Lemma for algextdeg . The subspace Z of annihilators of A is a principal ideal generated by the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k 𝐾 = ( 𝐸s 𝐹 )
algextdeg.l 𝐿 = ( 𝐸s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
algextdeg.d 𝐷 = ( deg1𝐸 )
algextdeg.m 𝑀 = ( 𝐸 minPoly 𝐹 )
algextdeg.f ( 𝜑𝐸 ∈ Field )
algextdeg.e ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
algextdeg.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
algextdeglem.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
algextdeglem.y 𝑃 = ( Poly1𝐾 )
algextdeglem.u 𝑈 = ( Base ‘ 𝑃 )
algextdeglem.g 𝐺 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
algextdeglem.n 𝑁 = ( 𝑥𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) )
algextdeglem.z 𝑍 = ( 𝐺 “ { ( 0g𝐿 ) } )
algextdeglem.q 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) )
algextdeglem.j 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐺𝑝 ) )
Assertion algextdeglem5 ( 𝜑𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) )

Proof

Step Hyp Ref Expression
1 algextdeg.k 𝐾 = ( 𝐸s 𝐹 )
2 algextdeg.l 𝐿 = ( 𝐸s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
3 algextdeg.d 𝐷 = ( deg1𝐸 )
4 algextdeg.m 𝑀 = ( 𝐸 minPoly 𝐹 )
5 algextdeg.f ( 𝜑𝐸 ∈ Field )
6 algextdeg.e ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
7 algextdeg.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
8 algextdeglem.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
9 algextdeglem.y 𝑃 = ( Poly1𝐾 )
10 algextdeglem.u 𝑈 = ( Base ‘ 𝑃 )
11 algextdeglem.g 𝐺 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
12 algextdeglem.n 𝑁 = ( 𝑥𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) )
13 algextdeglem.z 𝑍 = ( 𝐺 “ { ( 0g𝐿 ) } )
14 algextdeglem.q 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) )
15 algextdeglem.j 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐺𝑝 ) )
16 1 fveq2i ( Poly1𝐾 ) = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
17 9 16 eqtri 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
18 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
19 eqid ( 0g𝐸 ) = ( 0g𝐸 )
20 5 fldcrngd ( 𝜑𝐸 ∈ CRing )
21 issdrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
22 6 21 sylib ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
23 22 simp2d ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
24 8 1 18 19 20 23 irngssv ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
25 24 7 sseldd ( 𝜑𝐴 ∈ ( Base ‘ 𝐸 ) )
26 eqid { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) }
27 eqid ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 )
28 eqid ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
29 8 17 18 5 6 25 19 26 27 28 ply1annig1p ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) )
30 20 crnggrpd ( 𝜑𝐸 ∈ Grp )
31 30 grpmndd ( 𝜑𝐸 ∈ Mnd )
32 5 flddrngd ( 𝜑𝐸 ∈ DivRing )
33 subrgsubg ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) )
34 18 subgss ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) )
35 23 33 34 3syl ( 𝜑𝐹 ⊆ ( Base ‘ 𝐸 ) )
36 25 snssd ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) )
37 35 36 unssd ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) )
38 18 32 37 fldgensdrg ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) )
39 sdrgsubrg ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) )
40 subrgsubg ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) )
41 19 subg0cl ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) → ( 0g𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
42 38 39 40 41 4syl ( 𝜑 → ( 0g𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
43 18 32 37 fldgenssv ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) )
44 2 18 19 ress0g ( ( 𝐸 ∈ Mnd ∧ ( 0g𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) → ( 0g𝐸 ) = ( 0g𝐿 ) )
45 31 42 43 44 syl3anc ( 𝜑 → ( 0g𝐸 ) = ( 0g𝐿 ) )
46 45 sneqd ( 𝜑 → { ( 0g𝐸 ) } = { ( 0g𝐿 ) } )
47 46 imaeq2d ( 𝜑 → ( 𝐺 “ { ( 0g𝐸 ) } ) = ( 𝐺 “ { ( 0g𝐿 ) } ) )
48 13 47 eqtr4id ( 𝜑𝑍 = ( 𝐺 “ { ( 0g𝐸 ) } ) )
49 10 mpteq1i ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
50 11 49 eqtri 𝐺 = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
51 8 17 18 20 23 25 19 26 50 ply1annidllem ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = ( 𝐺 “ { ( 0g𝐸 ) } ) )
52 48 51 eqtr4d ( 𝜑𝑍 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
53 8 17 18 5 6 25 19 26 27 28 4 minplyval ( 𝜑 → ( 𝑀𝐴 ) = ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) )
54 53 sneqd ( 𝜑 → { ( 𝑀𝐴 ) } = { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } )
55 54 fveq2d ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) )
56 29 52 55 3eqtr4d ( 𝜑𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) )