Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
16 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
17 |
9 16
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
20 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
21 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
22 |
6 21
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
23 |
22
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
24 |
8 1 18 19 20 23
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
25 |
24 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
26 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
27 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
28 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
29 |
8 17 18 5 6 25 19 26 27 28
|
ply1annig1p |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
30 |
20
|
crnggrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
31 |
30
|
grpmndd |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
32 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
33 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
34 |
18
|
subgss |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
35 |
23 33 34
|
3syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
36 |
25
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) ) |
37 |
35 36
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) ) |
38 |
18 32 37
|
fldgensdrg |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) ) |
39 |
|
sdrgsubrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ) |
40 |
|
subrgsubg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) ) |
41 |
19
|
subg0cl |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
42 |
38 39 40 41
|
4syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
43 |
18 32 37
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) |
44 |
2 18 19
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
45 |
31 42 43 44
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
46 |
45
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐸 ) } = { ( 0g ‘ 𝐿 ) } ) |
47 |
46
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) ) |
48 |
13 47
|
eqtr4id |
⊢ ( 𝜑 → 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) ) |
49 |
10
|
mpteq1i |
⊢ ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
50 |
11 49
|
eqtri |
⊢ 𝐺 = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
51 |
8 17 18 20 23 25 19 26 50
|
ply1annidllem |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) ) |
52 |
48 51
|
eqtr4d |
⊢ ( 𝜑 → 𝑍 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
53 |
8 17 18 5 6 25 19 26 27 28 4
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
54 |
53
|
sneqd |
⊢ ( 𝜑 → { ( 𝑀 ‘ 𝐴 ) } = { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) |
55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
56 |
29 52 55
|
3eqtr4d |
⊢ ( 𝜑 → 𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) ) |