Metamath Proof Explorer


Theorem algextdeglem6

Description: Lemma for algextdeg . By r1pquslmic , the univariate polynomial remainder ring ( H "s P ) is isomorphic with the quotient ring Q . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k 𝐾 = ( 𝐸s 𝐹 )
algextdeg.l 𝐿 = ( 𝐸s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
algextdeg.d 𝐷 = ( deg1𝐸 )
algextdeg.m 𝑀 = ( 𝐸 minPoly 𝐹 )
algextdeg.f ( 𝜑𝐸 ∈ Field )
algextdeg.e ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
algextdeg.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
algextdeglem.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
algextdeglem.y 𝑃 = ( Poly1𝐾 )
algextdeglem.u 𝑈 = ( Base ‘ 𝑃 )
algextdeglem.g 𝐺 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
algextdeglem.n 𝑁 = ( 𝑥𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) )
algextdeglem.z 𝑍 = ( 𝐺 “ { ( 0g𝐿 ) } )
algextdeglem.q 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) )
algextdeglem.j 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐺𝑝 ) )
algextdeglem.r 𝑅 = ( rem1p𝐾 )
algextdeglem.h 𝐻 = ( 𝑝𝑈 ↦ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) )
Assertion algextdeglem6 ( 𝜑 → ( dim ‘ 𝑄 ) = ( dim ‘ ( 𝐻s 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 algextdeg.k 𝐾 = ( 𝐸s 𝐹 )
2 algextdeg.l 𝐿 = ( 𝐸s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) )
3 algextdeg.d 𝐷 = ( deg1𝐸 )
4 algextdeg.m 𝑀 = ( 𝐸 minPoly 𝐹 )
5 algextdeg.f ( 𝜑𝐸 ∈ Field )
6 algextdeg.e ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
7 algextdeg.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
8 algextdeglem.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
9 algextdeglem.y 𝑃 = ( Poly1𝐾 )
10 algextdeglem.u 𝑈 = ( Base ‘ 𝑃 )
11 algextdeglem.g 𝐺 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝐴 ) )
12 algextdeglem.n 𝑁 = ( 𝑥𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) )
13 algextdeglem.z 𝑍 = ( 𝐺 “ { ( 0g𝐿 ) } )
14 algextdeglem.q 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) )
15 algextdeglem.j 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐺𝑝 ) )
16 algextdeglem.r 𝑅 = ( rem1p𝐾 )
17 algextdeglem.h 𝐻 = ( 𝑝𝑈 ↦ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem5 ( 𝜑𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) )
19 sdrgsubrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
20 6 19 syl ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
21 1 subrgring ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐾 ∈ Ring )
22 20 21 syl ( 𝜑𝐾 ∈ Ring )
23 9 ply1ring ( 𝐾 ∈ Ring → 𝑃 ∈ Ring )
24 22 23 syl ( 𝜑𝑃 ∈ Ring )
25 1 fveq2i ( Poly1𝐾 ) = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
26 9 25 eqtri 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
27 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
28 eqid ( 0g𝐸 ) = ( 0g𝐸 )
29 5 fldcrngd ( 𝜑𝐸 ∈ CRing )
30 8 1 27 28 29 20 irngssv ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
31 30 7 sseldd ( 𝜑𝐴 ∈ ( Base ‘ 𝐸 ) )
32 eqid { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂𝑝 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂𝑝 ) ‘ 𝐴 ) = ( 0g𝐸 ) }
33 eqid ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 )
34 eqid ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
35 8 26 27 5 6 31 28 32 33 34 4 minplycl ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Base ‘ 𝑃 ) )
36 35 10 eleqtrrdi ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑈 )
37 eqid ( ∥r𝑃 ) = ( ∥r𝑃 )
38 10 33 37 rspsn ( ( 𝑃 ∈ Ring ∧ ( 𝑀𝐴 ) ∈ 𝑈 ) → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) = { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } )
39 24 36 38 syl2anc ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀𝐴 ) } ) = { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } )
40 nfv 𝑝 𝜑
41 nfab1 𝑝 { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 }
42 nfrab1 𝑝 { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) }
43 10 37 dvdsrcl2 ( ( 𝑃 ∈ Ring ∧ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ) → 𝑝𝑈 )
44 43 ex ( 𝑃 ∈ Ring → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝𝑝𝑈 ) )
45 44 pm4.71rd ( 𝑃 ∈ Ring → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝑝𝑈 ∧ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ) ) )
46 24 45 syl ( 𝜑 → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝑝𝑈 ∧ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ) ) )
47 22 adantr ( ( 𝜑𝑝𝑈 ) → 𝐾 ∈ Ring )
48 simpr ( ( 𝜑𝑝𝑈 ) → 𝑝𝑈 )
49 eqid ( 0g ‘ ( Poly1𝐸 ) ) = ( 0g ‘ ( Poly1𝐸 ) )
50 1 fveq2i ( Monic1p𝐾 ) = ( Monic1p ‘ ( 𝐸s 𝐹 ) )
51 49 5 6 4 7 50 minplym1p ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Monic1p𝐾 ) )
52 eqid ( Unic1p𝐾 ) = ( Unic1p𝐾 )
53 eqid ( Monic1p𝐾 ) = ( Monic1p𝐾 )
54 52 53 mon1puc1p ( ( 𝐾 ∈ Ring ∧ ( 𝑀𝐴 ) ∈ ( Monic1p𝐾 ) ) → ( 𝑀𝐴 ) ∈ ( Unic1p𝐾 ) )
55 22 51 54 syl2anc ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Unic1p𝐾 ) )
56 55 adantr ( ( 𝜑𝑝𝑈 ) → ( 𝑀𝐴 ) ∈ ( Unic1p𝐾 ) )
57 eqid ( 0g𝑃 ) = ( 0g𝑃 )
58 9 37 10 52 57 16 dvdsr1p ( ( 𝐾 ∈ Ring ∧ 𝑝𝑈 ∧ ( 𝑀𝐴 ) ∈ ( Unic1p𝐾 ) ) → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) = ( 0g𝑃 ) ) )
59 47 48 56 58 syl3anc ( ( 𝜑𝑝𝑈 ) → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) = ( 0g𝑃 ) ) )
60 ovexd ( ( 𝜑𝑝𝑈 ) → ( 𝑝 𝑅 ( 𝑀𝐴 ) ) ∈ V )
61 17 fvmpt2 ( ( 𝑝𝑈 ∧ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) ∈ V ) → ( 𝐻𝑝 ) = ( 𝑝 𝑅 ( 𝑀𝐴 ) ) )
62 48 60 61 syl2anc ( ( 𝜑𝑝𝑈 ) → ( 𝐻𝑝 ) = ( 𝑝 𝑅 ( 𝑀𝐴 ) ) )
63 62 eqeq1d ( ( 𝜑𝑝𝑈 ) → ( ( 𝐻𝑝 ) = ( 0g𝑃 ) ↔ ( 𝑝 𝑅 ( 𝑀𝐴 ) ) = ( 0g𝑃 ) ) )
64 59 63 bitr4d ( ( 𝜑𝑝𝑈 ) → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝐻𝑝 ) = ( 0g𝑃 ) ) )
65 64 pm5.32da ( 𝜑 → ( ( 𝑝𝑈 ∧ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ) ↔ ( 𝑝𝑈 ∧ ( 𝐻𝑝 ) = ( 0g𝑃 ) ) ) )
66 46 65 bitrd ( 𝜑 → ( ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 ↔ ( 𝑝𝑈 ∧ ( 𝐻𝑝 ) = ( 0g𝑃 ) ) ) )
67 abid ( 𝑝 ∈ { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } ↔ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 )
68 rabid ( 𝑝 ∈ { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) } ↔ ( 𝑝𝑈 ∧ ( 𝐻𝑝 ) = ( 0g𝑃 ) ) )
69 66 67 68 3bitr4g ( 𝜑 → ( 𝑝 ∈ { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } ↔ 𝑝 ∈ { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) } ) )
70 40 41 42 69 eqrd ( 𝜑 → { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } = { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) } )
71 40 60 17 fnmptd ( 𝜑𝐻 Fn 𝑈 )
72 fniniseg2 ( 𝐻 Fn 𝑈 → ( 𝐻 “ { ( 0g𝑃 ) } ) = { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) } )
73 71 72 syl ( 𝜑 → ( 𝐻 “ { ( 0g𝑃 ) } ) = { 𝑝𝑈 ∣ ( 𝐻𝑝 ) = ( 0g𝑃 ) } )
74 70 73 eqtr4d ( 𝜑 → { 𝑝 ∣ ( 𝑀𝐴 ) ( ∥r𝑃 ) 𝑝 } = ( 𝐻 “ { ( 0g𝑃 ) } ) )
75 18 39 74 3eqtrd ( 𝜑𝑍 = ( 𝐻 “ { ( 0g𝑃 ) } ) )
76 75 oveq2d ( 𝜑 → ( 𝑃 ~QG 𝑍 ) = ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) )
77 76 oveq2d ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) = ( 𝑃 /s ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) ) )
78 14 77 eqtrid ( 𝜑𝑄 = ( 𝑃 /s ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) ) )
79 eqid ( 𝐻 “ { ( 0g𝑃 ) } ) = ( 𝐻 “ { ( 0g𝑃 ) } )
80 eqid ( 𝑃 /s ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) ) = ( 𝑃 /s ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) )
81 9 10 16 52 17 22 55 57 79 80 r1pquslmic ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG ( 𝐻 “ { ( 0g𝑃 ) } ) ) ) ≃𝑚 ( 𝐻s 𝑃 ) )
82 78 81 eqbrtrd ( 𝜑𝑄𝑚 ( 𝐻s 𝑃 ) )
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem3 ( 𝜑𝑄 ∈ LVec )
84 82 83 lmicdim ( 𝜑 → ( dim ‘ 𝑄 ) = ( dim ‘ ( 𝐻s 𝑃 ) ) )