Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
16 |
|
algextdeglem.r |
⊢ 𝑅 = ( rem1p ‘ 𝐾 ) |
17 |
|
algextdeglem.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑈 ↦ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem5 |
⊢ ( 𝜑 → 𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) ) |
19 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
20 |
6 19
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
21 |
1
|
subrgring |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐾 ∈ Ring ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
23 |
9
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → 𝑃 ∈ Ring ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
25 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
26 |
9 25
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
29 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
30 |
8 1 27 28 29 20
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
31 |
30 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
32 |
|
eqid |
⊢ { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
33 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
34 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
35 |
8 26 27 5 6 31 28 32 33 34 4
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
36 |
35 10
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) |
37 |
|
eqid |
⊢ ( ∥r ‘ 𝑃 ) = ( ∥r ‘ 𝑃 ) |
38 |
10 33 37
|
rspsn |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) = { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } ) |
39 |
24 36 38
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( 𝑀 ‘ 𝐴 ) } ) = { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } ) |
40 |
|
nfv |
⊢ Ⅎ 𝑝 𝜑 |
41 |
|
nfab1 |
⊢ Ⅎ 𝑝 { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } |
42 |
|
nfrab1 |
⊢ Ⅎ 𝑝 { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } |
43 |
10 37
|
dvdsrcl2 |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ) → 𝑝 ∈ 𝑈 ) |
44 |
43
|
ex |
⊢ ( 𝑃 ∈ Ring → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 → 𝑝 ∈ 𝑈 ) ) |
45 |
44
|
pm4.71rd |
⊢ ( 𝑃 ∈ Ring → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ) ) ) |
46 |
24 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ) ) ) |
47 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐾 ∈ Ring ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
49 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
50 |
1
|
fveq2i |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
51 |
49 5 6 4 7 50
|
minplym1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
52 |
|
eqid |
⊢ ( Unic1p ‘ 𝐾 ) = ( Unic1p ‘ 𝐾 ) |
53 |
|
eqid |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ 𝐾 ) |
54 |
52 53
|
mon1puc1p |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
55 |
22 51 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
58 |
9 37 10 52 57 16
|
dvdsr1p |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 0g ‘ 𝑃 ) ) ) |
59 |
47 48 56 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 0g ‘ 𝑃 ) ) ) |
60 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ V ) |
61 |
17
|
fvmpt2 |
⊢ ( ( 𝑝 ∈ 𝑈 ∧ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ V ) → ( 𝐻 ‘ 𝑝 ) = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
62 |
48 60 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝐻 ‘ 𝑝 ) = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
63 |
62
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) ↔ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 0g ‘ 𝑃 ) ) ) |
64 |
59 63
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) ) ) |
65 |
64
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ) ↔ ( 𝑝 ∈ 𝑈 ∧ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) ) ) ) |
66 |
46 65
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ↔ ( 𝑝 ∈ 𝑈 ∧ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) ) ) ) |
67 |
|
abid |
⊢ ( 𝑝 ∈ { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } ↔ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 ) |
68 |
|
rabid |
⊢ ( 𝑝 ∈ { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } ↔ ( 𝑝 ∈ 𝑈 ∧ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) ) ) |
69 |
66 67 68
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑝 ∈ { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } ↔ 𝑝 ∈ { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } ) ) |
70 |
40 41 42 69
|
eqrd |
⊢ ( 𝜑 → { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } = { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } ) |
71 |
40 60 17
|
fnmptd |
⊢ ( 𝜑 → 𝐻 Fn 𝑈 ) |
72 |
|
fniniseg2 |
⊢ ( 𝐻 Fn 𝑈 → ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) = { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } ) |
73 |
71 72
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) = { 𝑝 ∈ 𝑈 ∣ ( 𝐻 ‘ 𝑝 ) = ( 0g ‘ 𝑃 ) } ) |
74 |
70 73
|
eqtr4d |
⊢ ( 𝜑 → { 𝑝 ∣ ( 𝑀 ‘ 𝐴 ) ( ∥r ‘ 𝑃 ) 𝑝 } = ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) |
75 |
18 39 74
|
3eqtrd |
⊢ ( 𝜑 → 𝑍 = ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) |
76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ~QG 𝑍 ) = ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) ) |
78 |
14 77
|
eqtrid |
⊢ ( 𝜑 → 𝑄 = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) ) |
79 |
|
eqid |
⊢ ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) = ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) |
80 |
|
eqid |
⊢ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) |
81 |
9 10 16 52 17 22 55 57 79 80
|
r1pquslmic |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐻 “ { ( 0g ‘ 𝑃 ) } ) ) ) ≃𝑚 ( 𝐻 “s 𝑃 ) ) |
82 |
78 81
|
eqbrtrd |
⊢ ( 𝜑 → 𝑄 ≃𝑚 ( 𝐻 “s 𝑃 ) ) |
83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
⊢ ( 𝜑 → 𝑄 ∈ LVec ) |
84 |
82 83
|
lmicdim |
⊢ ( 𝜑 → ( dim ‘ 𝑄 ) = ( dim ‘ ( 𝐻 “s 𝑃 ) ) ) |