| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1plmhm.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1plmhm.2 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
r1plmhm.4 |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 4 |
|
r1plmhm.5 |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 5 |
|
r1plmhm.6 |
⊢ 𝐹 = ( 𝑓 ∈ 𝑈 ↦ ( 𝑓 𝐸 𝑀 ) ) |
| 6 |
|
r1plmhm.9 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
r1plmhm.10 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑁 ) |
| 8 |
|
r1pquslmic.0 |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 9 |
|
r1pquslmic.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 10 |
|
r1pquslmic.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝐾 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 “s 𝑃 ) = ( 𝐹 “s 𝑃 ) ) |
| 12 |
2
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑓 ∈ 𝑈 ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑀 ∈ 𝑁 ) |
| 17 |
3 1 2 4
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁 ) → ( 𝑓 𝐸 𝑀 ) ∈ 𝑈 ) |
| 18 |
14 15 16 17
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → ( 𝑓 𝐸 𝑀 ) ∈ 𝑈 ) |
| 19 |
18 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ 𝑈 ) |
| 20 |
|
fimadmfo |
⊢ ( 𝐹 : 𝑈 ⟶ 𝑈 → 𝐹 : 𝑈 –onto→ ( 𝐹 “ 𝑈 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑈 –onto→ ( 𝐹 “ 𝑈 ) ) |
| 22 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) ) |
| 23 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 24 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 25 |
23 24
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑞 ) ) ) |
| 26 |
1 2 3 4 5 6 7
|
r1plmhm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 LMHom ( 𝐹 “s 𝑃 ) ) ) |
| 27 |
26
|
lmhmghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 GrpHom ( 𝐹 “s 𝑃 ) ) ) |
| 28 |
27
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝐹 ∈ ( 𝑃 GrpHom ( 𝐹 “s 𝑃 ) ) ) |
| 29 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑎 ∈ 𝑈 ) |
| 30 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑏 ∈ 𝑈 ) |
| 31 |
|
eqid |
⊢ ( +g ‘ ( 𝐹 “s 𝑃 ) ) = ( +g ‘ ( 𝐹 “s 𝑃 ) ) |
| 32 |
2 13 31
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑃 GrpHom ( 𝐹 “s 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 |
28 29 30 32
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 34 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑓 ∈ 𝑈 ) |
| 35 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑞 ∈ 𝑈 ) |
| 36 |
2 13 31
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑃 GrpHom ( 𝐹 “s 𝑃 ) ) ∧ 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) = ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑞 ) ) ) |
| 37 |
28 34 35 36
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) = ( ( 𝐹 ‘ 𝑓 ) ( +g ‘ ( 𝐹 “s 𝑃 ) ) ( 𝐹 ‘ 𝑞 ) ) ) |
| 38 |
25 33 37
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) ) |
| 39 |
38
|
expl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑓 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 40 |
39
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ ( 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 41 |
22 40
|
sylanbr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) ∧ ( 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 42 |
41
|
3impa |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ ( 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑓 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑓 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 43 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 44 |
6 43
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 45 |
44
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 46 |
45
|
grpmndd |
⊢ ( 𝜑 → 𝑃 ∈ Mnd ) |
| 47 |
11 12 13 21 42 46 8
|
imasmnd |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑃 ) ∈ Mnd ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝐹 “s 𝑃 ) ) ) ) |
| 48 |
47
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ ( 𝐹 “s 𝑃 ) ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑓 = 0 → ( 𝑓 𝐸 𝑀 ) = ( 0 𝐸 𝑀 ) ) |
| 50 |
1 2 4 3 6 7 8
|
r1p0 |
⊢ ( 𝜑 → ( 0 𝐸 𝑀 ) = 0 ) |
| 51 |
49 50
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑓 = 0 ) → ( 𝑓 𝐸 𝑀 ) = 0 ) |
| 52 |
2 8
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → 0 ∈ 𝑈 ) |
| 53 |
44 52
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑈 ) |
| 54 |
5 51 53 53
|
fvmptd2 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 55 |
48 54
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐹 “s 𝑃 ) ) = 0 ) |
| 56 |
55
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } = { 0 } ) |
| 57 |
56
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) = ( ◡ 𝐹 “ { 0 } ) ) |
| 58 |
57 9
|
eqtr4di |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) = 𝐾 ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) = ( 𝑃 ~QG 𝐾 ) ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) ) = ( 𝑃 /s ( 𝑃 ~QG 𝐾 ) ) ) |
| 61 |
60 10
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) ) = 𝑄 ) |
| 62 |
|
eqid |
⊢ ( 0g ‘ ( 𝐹 “s 𝑃 ) ) = ( 0g ‘ ( 𝐹 “s 𝑃 ) ) |
| 63 |
|
eqid |
⊢ ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) = ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) |
| 64 |
|
eqid |
⊢ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) ) = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) ) |
| 65 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑈 ) |
| 66 |
|
fnima |
⊢ ( 𝐹 Fn 𝑈 → ( 𝐹 “ 𝑈 ) = ran 𝐹 ) |
| 67 |
65 66
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑈 ) = ran 𝐹 ) |
| 68 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 69 |
68
|
a1i |
⊢ ( 𝜑 → 𝑃 ∈ V ) |
| 70 |
11 12 21 69
|
imasbas |
⊢ ( 𝜑 → ( 𝐹 “ 𝑈 ) = ( Base ‘ ( 𝐹 “s 𝑃 ) ) ) |
| 71 |
67 70
|
eqtr3d |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ ( 𝐹 “s 𝑃 ) ) ) |
| 72 |
62 26 63 64 71
|
lmicqusker |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐹 “ { ( 0g ‘ ( 𝐹 “s 𝑃 ) ) } ) ) ) ≃𝑚 ( 𝐹 “s 𝑃 ) ) |
| 73 |
61 72
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑄 ≃𝑚 ( 𝐹 “s 𝑃 ) ) |