| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1plmhm.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1plmhm.2 |
|- U = ( Base ` P ) |
| 3 |
|
r1plmhm.4 |
|- E = ( rem1p ` R ) |
| 4 |
|
r1plmhm.5 |
|- N = ( Unic1p ` R ) |
| 5 |
|
r1plmhm.6 |
|- F = ( f e. U |-> ( f E M ) ) |
| 6 |
|
r1plmhm.9 |
|- ( ph -> R e. Ring ) |
| 7 |
|
r1plmhm.10 |
|- ( ph -> M e. N ) |
| 8 |
|
r1pquslmic.0 |
|- .0. = ( 0g ` P ) |
| 9 |
|
r1pquslmic.k |
|- K = ( `' F " { .0. } ) |
| 10 |
|
r1pquslmic.q |
|- Q = ( P /s ( P ~QG K ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( F "s P ) = ( F "s P ) ) |
| 12 |
2
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
| 13 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ f e. U ) -> R e. Ring ) |
| 15 |
|
simpr |
|- ( ( ph /\ f e. U ) -> f e. U ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ f e. U ) -> M e. N ) |
| 17 |
3 1 2 4
|
r1pcl |
|- ( ( R e. Ring /\ f e. U /\ M e. N ) -> ( f E M ) e. U ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ( ph /\ f e. U ) -> ( f E M ) e. U ) |
| 19 |
18 5
|
fmptd |
|- ( ph -> F : U --> U ) |
| 20 |
|
fimadmfo |
|- ( F : U --> U -> F : U -onto-> ( F " U ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> F : U -onto-> ( F " U ) ) |
| 22 |
|
anass |
|- ( ( ( ph /\ a e. U ) /\ b e. U ) <-> ( ph /\ ( a e. U /\ b e. U ) ) ) |
| 23 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` a ) = ( F ` f ) ) |
| 24 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` b ) = ( F ` q ) ) |
| 25 |
23 24
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
| 26 |
1 2 3 4 5 6 7
|
r1plmhm |
|- ( ph -> F e. ( P LMHom ( F "s P ) ) ) |
| 27 |
26
|
lmhmghmd |
|- ( ph -> F e. ( P GrpHom ( F "s P ) ) ) |
| 28 |
27
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> F e. ( P GrpHom ( F "s P ) ) ) |
| 29 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> a e. U ) |
| 30 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> b e. U ) |
| 31 |
|
eqid |
|- ( +g ` ( F "s P ) ) = ( +g ` ( F "s P ) ) |
| 32 |
2 13 31
|
ghmlin |
|- ( ( F e. ( P GrpHom ( F "s P ) ) /\ a e. U /\ b e. U ) -> ( F ` ( a ( +g ` P ) b ) ) = ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) ) |
| 33 |
28 29 30 32
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( ( F ` a ) ( +g ` ( F "s P ) ) ( F ` b ) ) ) |
| 34 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> f e. U ) |
| 35 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> q e. U ) |
| 36 |
2 13 31
|
ghmlin |
|- ( ( F e. ( P GrpHom ( F "s P ) ) /\ f e. U /\ q e. U ) -> ( F ` ( f ( +g ` P ) q ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
| 37 |
28 34 35 36
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( f ( +g ` P ) q ) ) = ( ( F ` f ) ( +g ` ( F "s P ) ) ( F ` q ) ) ) |
| 38 |
25 33 37
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` f ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) |
| 39 |
38
|
expl |
|- ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ f e. U ) /\ q e. U ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
| 40 |
39
|
anasss |
|- ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
| 41 |
22 40
|
sylanbr |
|- ( ( ( ph /\ ( a e. U /\ b e. U ) ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
| 42 |
41
|
3impa |
|- ( ( ph /\ ( a e. U /\ b e. U ) /\ ( f e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` f ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( f ( +g ` P ) q ) ) ) ) |
| 43 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 44 |
6 43
|
syl |
|- ( ph -> P e. Ring ) |
| 45 |
44
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 46 |
45
|
grpmndd |
|- ( ph -> P e. Mnd ) |
| 47 |
11 12 13 21 42 46 8
|
imasmnd |
|- ( ph -> ( ( F "s P ) e. Mnd /\ ( F ` .0. ) = ( 0g ` ( F "s P ) ) ) ) |
| 48 |
47
|
simprd |
|- ( ph -> ( F ` .0. ) = ( 0g ` ( F "s P ) ) ) |
| 49 |
|
oveq1 |
|- ( f = .0. -> ( f E M ) = ( .0. E M ) ) |
| 50 |
1 2 4 3 6 7 8
|
r1p0 |
|- ( ph -> ( .0. E M ) = .0. ) |
| 51 |
49 50
|
sylan9eqr |
|- ( ( ph /\ f = .0. ) -> ( f E M ) = .0. ) |
| 52 |
2 8
|
ring0cl |
|- ( P e. Ring -> .0. e. U ) |
| 53 |
44 52
|
syl |
|- ( ph -> .0. e. U ) |
| 54 |
5 51 53 53
|
fvmptd2 |
|- ( ph -> ( F ` .0. ) = .0. ) |
| 55 |
48 54
|
eqtr3d |
|- ( ph -> ( 0g ` ( F "s P ) ) = .0. ) |
| 56 |
55
|
sneqd |
|- ( ph -> { ( 0g ` ( F "s P ) ) } = { .0. } ) |
| 57 |
56
|
imaeq2d |
|- ( ph -> ( `' F " { ( 0g ` ( F "s P ) ) } ) = ( `' F " { .0. } ) ) |
| 58 |
57 9
|
eqtr4di |
|- ( ph -> ( `' F " { ( 0g ` ( F "s P ) ) } ) = K ) |
| 59 |
58
|
oveq2d |
|- ( ph -> ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) = ( P ~QG K ) ) |
| 60 |
59
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = ( P /s ( P ~QG K ) ) ) |
| 61 |
60 10
|
eqtr4di |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = Q ) |
| 62 |
|
eqid |
|- ( 0g ` ( F "s P ) ) = ( 0g ` ( F "s P ) ) |
| 63 |
|
eqid |
|- ( `' F " { ( 0g ` ( F "s P ) ) } ) = ( `' F " { ( 0g ` ( F "s P ) ) } ) |
| 64 |
|
eqid |
|- ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) = ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) |
| 65 |
19
|
ffnd |
|- ( ph -> F Fn U ) |
| 66 |
|
fnima |
|- ( F Fn U -> ( F " U ) = ran F ) |
| 67 |
65 66
|
syl |
|- ( ph -> ( F " U ) = ran F ) |
| 68 |
1
|
fvexi |
|- P e. _V |
| 69 |
68
|
a1i |
|- ( ph -> P e. _V ) |
| 70 |
11 12 21 69
|
imasbas |
|- ( ph -> ( F " U ) = ( Base ` ( F "s P ) ) ) |
| 71 |
67 70
|
eqtr3d |
|- ( ph -> ran F = ( Base ` ( F "s P ) ) ) |
| 72 |
62 26 63 64 71
|
lmicqusker |
|- ( ph -> ( P /s ( P ~QG ( `' F " { ( 0g ` ( F "s P ) ) } ) ) ) ~=m ( F "s P ) ) |
| 73 |
61 72
|
eqbrtrrd |
|- ( ph -> Q ~=m ( F "s P ) ) |