| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1plmhm.1 |
|
| 2 |
|
r1plmhm.2 |
|
| 3 |
|
r1plmhm.4 |
|
| 4 |
|
r1plmhm.5 |
|
| 5 |
|
r1plmhm.6 |
|
| 6 |
|
r1plmhm.9 |
|
| 7 |
|
r1plmhm.10 |
|
| 8 |
|
r1pquslmic.0 |
|
| 9 |
|
r1pquslmic.k |
|
| 10 |
|
r1pquslmic.q |
|
| 11 |
|
eqidd |
|
| 12 |
2
|
a1i |
|
| 13 |
|
eqid |
|
| 14 |
6
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
7
|
adantr |
|
| 17 |
3 1 2 4
|
r1pcl |
|
| 18 |
14 15 16 17
|
syl3anc |
|
| 19 |
18 5
|
fmptd |
|
| 20 |
|
fimadmfo |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
anass |
|
| 23 |
|
simplr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
1 2 3 4 5 6 7
|
r1plmhm |
|
| 27 |
26
|
lmhmghmd |
|
| 28 |
27
|
ad6antr |
|
| 29 |
|
simp-6r |
|
| 30 |
|
simp-5r |
|
| 31 |
|
eqid |
|
| 32 |
2 13 31
|
ghmlin |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
|
simp-4r |
|
| 35 |
|
simpllr |
|
| 36 |
2 13 31
|
ghmlin |
|
| 37 |
28 34 35 36
|
syl3anc |
|
| 38 |
25 33 37
|
3eqtr4d |
|
| 39 |
38
|
expl |
|
| 40 |
39
|
anasss |
|
| 41 |
22 40
|
sylanbr |
|
| 42 |
41
|
3impa |
|
| 43 |
1
|
ply1ring |
|
| 44 |
6 43
|
syl |
|
| 45 |
44
|
ringgrpd |
|
| 46 |
45
|
grpmndd |
|
| 47 |
11 12 13 21 42 46 8
|
imasmnd |
|
| 48 |
47
|
simprd |
|
| 49 |
|
oveq1 |
|
| 50 |
1 2 4 3 6 7 8
|
r1p0 |
|
| 51 |
49 50
|
sylan9eqr |
|
| 52 |
2 8
|
ring0cl |
|
| 53 |
44 52
|
syl |
|
| 54 |
5 51 53 53
|
fvmptd2 |
|
| 55 |
48 54
|
eqtr3d |
|
| 56 |
55
|
sneqd |
|
| 57 |
56
|
imaeq2d |
|
| 58 |
57 9
|
eqtr4di |
|
| 59 |
58
|
oveq2d |
|
| 60 |
59
|
oveq2d |
|
| 61 |
60 10
|
eqtr4di |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
|
eqid |
|
| 65 |
19
|
ffnd |
|
| 66 |
|
fnima |
|
| 67 |
65 66
|
syl |
|
| 68 |
1
|
fvexi |
|
| 69 |
68
|
a1i |
|
| 70 |
11 12 21 69
|
imasbas |
|
| 71 |
67 70
|
eqtr3d |
|
| 72 |
62 26 63 64 71
|
lmicqusker |
|
| 73 |
61 72
|
eqbrtrrd |
|