| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasmnd.u |
|
| 2 |
|
imasmnd.v |
|
| 3 |
|
imasmnd.p |
|
| 4 |
|
imasmnd.f |
|
| 5 |
|
imasmnd.e |
|
| 6 |
|
imasmnd.r |
|
| 7 |
|
imasmnd.z |
|
| 8 |
6
|
3ad2ant1 |
|
| 9 |
|
simp2 |
|
| 10 |
2
|
3ad2ant1 |
|
| 11 |
9 10
|
eleqtrd |
|
| 12 |
|
simp3 |
|
| 13 |
12 10
|
eleqtrd |
|
| 14 |
|
eqid |
|
| 15 |
14 3
|
mndcl |
|
| 16 |
8 11 13 15
|
syl3anc |
|
| 17 |
16 10
|
eleqtrrd |
|
| 18 |
6
|
adantr |
|
| 19 |
11
|
3adant3r3 |
|
| 20 |
13
|
3adant3r3 |
|
| 21 |
|
simpr3 |
|
| 22 |
2
|
adantr |
|
| 23 |
21 22
|
eleqtrd |
|
| 24 |
14 3
|
mndass |
|
| 25 |
18 19 20 23 24
|
syl13anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
14 7
|
mndidcl |
|
| 28 |
6 27
|
syl |
|
| 29 |
28 2
|
eleqtrrd |
|
| 30 |
2
|
eleq2d |
|
| 31 |
30
|
biimpa |
|
| 32 |
14 3 7
|
mndlid |
|
| 33 |
6 31 32
|
syl2an2r |
|
| 34 |
33
|
fveq2d |
|
| 35 |
14 3 7
|
mndrid |
|
| 36 |
6 31 35
|
syl2an2r |
|
| 37 |
36
|
fveq2d |
|
| 38 |
1 2 3 4 5 6 17 26 29 34 37
|
imasmnd2 |
|