Metamath Proof Explorer


Theorem imasmnd

Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasmnd.u φU=F𝑠R
imasmnd.v φV=BaseR
imasmnd.p +˙=+R
imasmnd.f φF:VontoB
imasmnd.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
imasmnd.r φRMnd
imasmnd.z 0˙=0R
Assertion imasmnd φUMndF0˙=0U

Proof

Step Hyp Ref Expression
1 imasmnd.u φU=F𝑠R
2 imasmnd.v φV=BaseR
3 imasmnd.p +˙=+R
4 imasmnd.f φF:VontoB
5 imasmnd.e φaVbVpVqVFa=FpFb=FqFa+˙b=Fp+˙q
6 imasmnd.r φRMnd
7 imasmnd.z 0˙=0R
8 6 3ad2ant1 φxVyVRMnd
9 simp2 φxVyVxV
10 2 3ad2ant1 φxVyVV=BaseR
11 9 10 eleqtrd φxVyVxBaseR
12 simp3 φxVyVyV
13 12 10 eleqtrd φxVyVyBaseR
14 eqid BaseR=BaseR
15 14 3 mndcl RMndxBaseRyBaseRx+˙yBaseR
16 8 11 13 15 syl3anc φxVyVx+˙yBaseR
17 16 10 eleqtrrd φxVyVx+˙yV
18 6 adantr φxVyVzVRMnd
19 11 3adant3r3 φxVyVzVxBaseR
20 13 3adant3r3 φxVyVzVyBaseR
21 simpr3 φxVyVzVzV
22 2 adantr φxVyVzVV=BaseR
23 21 22 eleqtrd φxVyVzVzBaseR
24 14 3 mndass RMndxBaseRyBaseRzBaseRx+˙y+˙z=x+˙y+˙z
25 18 19 20 23 24 syl13anc φxVyVzVx+˙y+˙z=x+˙y+˙z
26 25 fveq2d φxVyVzVFx+˙y+˙z=Fx+˙y+˙z
27 14 7 mndidcl RMnd0˙BaseR
28 6 27 syl φ0˙BaseR
29 28 2 eleqtrrd φ0˙V
30 2 eleq2d φxVxBaseR
31 30 biimpa φxVxBaseR
32 14 3 7 mndlid RMndxBaseR0˙+˙x=x
33 6 31 32 syl2an2r φxV0˙+˙x=x
34 33 fveq2d φxVF0˙+˙x=Fx
35 14 3 7 mndrid RMndxBaseRx+˙0˙=x
36 6 31 35 syl2an2r φxVx+˙0˙=x
37 36 fveq2d φxVFx+˙0˙=Fx
38 1 2 3 4 5 6 17 26 29 34 37 imasmnd2 φUMndF0˙=0U