Step |
Hyp |
Ref |
Expression |
1 |
|
imasmnd.u |
|
2 |
|
imasmnd.v |
|
3 |
|
imasmnd.p |
|
4 |
|
imasmnd.f |
|
5 |
|
imasmnd.e |
|
6 |
|
imasmnd.r |
|
7 |
|
imasmnd.z |
|
8 |
6
|
3ad2ant1 |
|
9 |
|
simp2 |
|
10 |
2
|
3ad2ant1 |
|
11 |
9 10
|
eleqtrd |
|
12 |
|
simp3 |
|
13 |
12 10
|
eleqtrd |
|
14 |
|
eqid |
|
15 |
14 3
|
mndcl |
|
16 |
8 11 13 15
|
syl3anc |
|
17 |
16 10
|
eleqtrrd |
|
18 |
6
|
adantr |
|
19 |
11
|
3adant3r3 |
|
20 |
13
|
3adant3r3 |
|
21 |
|
simpr3 |
|
22 |
2
|
adantr |
|
23 |
21 22
|
eleqtrd |
|
24 |
14 3
|
mndass |
|
25 |
18 19 20 23 24
|
syl13anc |
|
26 |
25
|
fveq2d |
|
27 |
14 7
|
mndidcl |
|
28 |
6 27
|
syl |
|
29 |
28 2
|
eleqtrrd |
|
30 |
2
|
eleq2d |
|
31 |
30
|
biimpa |
|
32 |
14 3 7
|
mndlid |
|
33 |
6 31 32
|
syl2an2r |
|
34 |
33
|
fveq2d |
|
35 |
14 3 7
|
mndrid |
|
36 |
6 31 35
|
syl2an2r |
|
37 |
36
|
fveq2d |
|
38 |
1 2 3 4 5 6 17 26 29 34 37
|
imasmnd2 |
|