Step |
Hyp |
Ref |
Expression |
1 |
|
imasmnd.u |
|
2 |
|
imasmnd.v |
|
3 |
|
imasmnd.p |
|
4 |
|
imasmnd.f |
|
5 |
|
imasmnd.e |
|
6 |
|
imasmnd2.r |
|
7 |
|
imasmnd2.1 |
|
8 |
|
imasmnd2.2 |
|
9 |
|
imasmnd2.3 |
|
10 |
|
imasmnd2.4 |
|
11 |
|
imasmnd2.5 |
|
12 |
1 2 4 6
|
imasbas |
|
13 |
|
eqidd |
|
14 |
|
eqid |
|
15 |
7
|
3expb |
|
16 |
15
|
caovclg |
|
17 |
4 5 1 2 6 3 14 16
|
imasaddf |
|
18 |
|
fovrn |
|
19 |
17 18
|
syl3an1 |
|
20 |
|
forn |
|
21 |
4 20
|
syl |
|
22 |
21
|
eleq2d |
|
23 |
21
|
eleq2d |
|
24 |
21
|
eleq2d |
|
25 |
22 23 24
|
3anbi123d |
|
26 |
|
fofn |
|
27 |
4 26
|
syl |
|
28 |
|
fvelrnb |
|
29 |
|
fvelrnb |
|
30 |
|
fvelrnb |
|
31 |
28 29 30
|
3anbi123d |
|
32 |
27 31
|
syl |
|
33 |
25 32
|
bitr3d |
|
34 |
|
3reeanv |
|
35 |
33 34
|
bitr4di |
|
36 |
|
simpl |
|
37 |
7
|
3adant3r3 |
|
38 |
|
simpr3 |
|
39 |
4 5 1 2 6 3 14
|
imasaddval |
|
40 |
36 37 38 39
|
syl3anc |
|
41 |
|
simpr1 |
|
42 |
16
|
caovclg |
|
43 |
42
|
3adantr1 |
|
44 |
4 5 1 2 6 3 14
|
imasaddval |
|
45 |
36 41 43 44
|
syl3anc |
|
46 |
8 40 45
|
3eqtr4d |
|
47 |
4 5 1 2 6 3 14
|
imasaddval |
|
48 |
47
|
3adant3r3 |
|
49 |
48
|
oveq1d |
|
50 |
4 5 1 2 6 3 14
|
imasaddval |
|
51 |
50
|
3adant3r1 |
|
52 |
51
|
oveq2d |
|
53 |
46 49 52
|
3eqtr4d |
|
54 |
|
simp1 |
|
55 |
|
simp2 |
|
56 |
54 55
|
oveq12d |
|
57 |
|
simp3 |
|
58 |
56 57
|
oveq12d |
|
59 |
55 57
|
oveq12d |
|
60 |
54 59
|
oveq12d |
|
61 |
58 60
|
eqeq12d |
|
62 |
53 61
|
syl5ibcom |
|
63 |
62
|
3exp2 |
|
64 |
63
|
imp32 |
|
65 |
64
|
rexlimdv |
|
66 |
65
|
rexlimdvva |
|
67 |
35 66
|
sylbid |
|
68 |
67
|
imp |
|
69 |
|
fof |
|
70 |
4 69
|
syl |
|
71 |
70 9
|
ffvelrnd |
|
72 |
27 28
|
syl |
|
73 |
22 72
|
bitr3d |
|
74 |
|
simpl |
|
75 |
9
|
adantr |
|
76 |
|
simpr |
|
77 |
4 5 1 2 6 3 14
|
imasaddval |
|
78 |
74 75 76 77
|
syl3anc |
|
79 |
78 10
|
eqtrd |
|
80 |
|
oveq2 |
|
81 |
|
id |
|
82 |
80 81
|
eqeq12d |
|
83 |
79 82
|
syl5ibcom |
|
84 |
83
|
rexlimdva |
|
85 |
73 84
|
sylbid |
|
86 |
85
|
imp |
|
87 |
4 5 1 2 6 3 14
|
imasaddval |
|
88 |
75 87
|
mpd3an3 |
|
89 |
88 11
|
eqtrd |
|
90 |
|
oveq1 |
|
91 |
90 81
|
eqeq12d |
|
92 |
89 91
|
syl5ibcom |
|
93 |
92
|
rexlimdva |
|
94 |
73 93
|
sylbid |
|
95 |
94
|
imp |
|
96 |
12 13 19 68 71 86 95
|
ismndd |
|
97 |
12 13 71 86 95
|
grpidd |
|
98 |
96 97
|
jca |
|