| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1plmhm.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1plmhm.2 |
|- U = ( Base ` P ) |
| 3 |
|
r1plmhm.4 |
|- E = ( rem1p ` R ) |
| 4 |
|
r1plmhm.5 |
|- N = ( Unic1p ` R ) |
| 5 |
|
r1plmhm.6 |
|- F = ( f e. U |-> ( f E M ) ) |
| 6 |
|
r1plmhm.9 |
|- ( ph -> R e. Ring ) |
| 7 |
|
r1plmhm.10 |
|- ( ph -> M e. N ) |
| 8 |
6
|
adantr |
|- ( ( ph /\ f e. U ) -> R e. Ring ) |
| 9 |
|
simpr |
|- ( ( ph /\ f e. U ) -> f e. U ) |
| 10 |
7
|
adantr |
|- ( ( ph /\ f e. U ) -> M e. N ) |
| 11 |
3 1 2 4
|
r1pcl |
|- ( ( R e. Ring /\ f e. U /\ M e. N ) -> ( f E M ) e. U ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( ph /\ f e. U ) -> ( f E M ) e. U ) |
| 13 |
12 5
|
fmptd |
|- ( ph -> F : U --> U ) |
| 14 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 15 |
|
anass |
|- ( ( ( ph /\ a e. U ) /\ b e. U ) <-> ( ph /\ ( a e. U /\ b e. U ) ) ) |
| 16 |
6
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> R e. Ring ) |
| 17 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> a e. U ) |
| 18 |
7
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> M e. N ) |
| 19 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` a ) = ( F ` p ) ) |
| 20 |
|
oveq1 |
|- ( f = a -> ( f E M ) = ( a E M ) ) |
| 21 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( a E M ) e. _V ) |
| 22 |
5 20 17 21
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` a ) = ( a E M ) ) |
| 23 |
|
oveq1 |
|- ( f = p -> ( f E M ) = ( p E M ) ) |
| 24 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> p e. U ) |
| 25 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( p E M ) e. _V ) |
| 26 |
5 23 24 25
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` p ) = ( p E M ) ) |
| 27 |
19 22 26
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( a E M ) = ( p E M ) ) |
| 28 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> b e. U ) |
| 29 |
1 2 4 3 16 17 18 27 14 24 28
|
r1padd1 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( a ( +g ` P ) b ) E M ) = ( ( p ( +g ` P ) b ) E M ) ) |
| 30 |
|
oveq1 |
|- ( f = ( a ( +g ` P ) b ) -> ( f E M ) = ( ( a ( +g ` P ) b ) E M ) ) |
| 31 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 32 |
6 31
|
syl |
|- ( ph -> P e. Ring ) |
| 33 |
32
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 34 |
33
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> P e. Grp ) |
| 35 |
2 14 34 17 28
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( a ( +g ` P ) b ) e. U ) |
| 36 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( a ( +g ` P ) b ) E M ) e. _V ) |
| 37 |
5 30 35 36
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( ( a ( +g ` P ) b ) E M ) ) |
| 38 |
|
oveq1 |
|- ( f = ( p ( +g ` P ) b ) -> ( f E M ) = ( ( p ( +g ` P ) b ) E M ) ) |
| 39 |
2 14 34 24 28
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( p ( +g ` P ) b ) e. U ) |
| 40 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( p ( +g ` P ) b ) E M ) e. _V ) |
| 41 |
5 38 39 40
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( p ( +g ` P ) b ) ) = ( ( p ( +g ` P ) b ) E M ) ) |
| 42 |
29 37 41
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) b ) ) ) |
| 43 |
32
|
ringabld |
|- ( ph -> P e. Abel ) |
| 44 |
43
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> P e. Abel ) |
| 45 |
2 14
|
ablcom |
|- ( ( P e. Abel /\ p e. U /\ b e. U ) -> ( p ( +g ` P ) b ) = ( b ( +g ` P ) p ) ) |
| 46 |
44 24 28 45
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( p ( +g ` P ) b ) = ( b ( +g ` P ) p ) ) |
| 47 |
46
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( p ( +g ` P ) b ) ) = ( F ` ( b ( +g ` P ) p ) ) ) |
| 48 |
42 47
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( b ( +g ` P ) p ) ) ) |
| 49 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` b ) = ( F ` q ) ) |
| 50 |
|
oveq1 |
|- ( f = b -> ( f E M ) = ( b E M ) ) |
| 51 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( b E M ) e. _V ) |
| 52 |
5 50 28 51
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` b ) = ( b E M ) ) |
| 53 |
|
oveq1 |
|- ( f = q -> ( f E M ) = ( q E M ) ) |
| 54 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> q e. U ) |
| 55 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( q E M ) e. _V ) |
| 56 |
5 53 54 55
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` q ) = ( q E M ) ) |
| 57 |
49 52 56
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( b E M ) = ( q E M ) ) |
| 58 |
1 2 4 3 16 28 18 57 14 54 24
|
r1padd1 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( b ( +g ` P ) p ) E M ) = ( ( q ( +g ` P ) p ) E M ) ) |
| 59 |
|
oveq1 |
|- ( f = ( b ( +g ` P ) p ) -> ( f E M ) = ( ( b ( +g ` P ) p ) E M ) ) |
| 60 |
2 14 34 28 24
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( b ( +g ` P ) p ) e. U ) |
| 61 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( b ( +g ` P ) p ) E M ) e. _V ) |
| 62 |
5 59 60 61
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( b ( +g ` P ) p ) ) = ( ( b ( +g ` P ) p ) E M ) ) |
| 63 |
|
oveq1 |
|- ( f = ( q ( +g ` P ) p ) -> ( f E M ) = ( ( q ( +g ` P ) p ) E M ) ) |
| 64 |
2 14 34 54 24
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( q ( +g ` P ) p ) e. U ) |
| 65 |
|
ovexd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( ( q ( +g ` P ) p ) E M ) e. _V ) |
| 66 |
5 63 64 65
|
fvmptd3 |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( q ( +g ` P ) p ) ) = ( ( q ( +g ` P ) p ) E M ) ) |
| 67 |
58 62 66
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( b ( +g ` P ) p ) ) = ( F ` ( q ( +g ` P ) p ) ) ) |
| 68 |
2 14
|
ablcom |
|- ( ( P e. Abel /\ q e. U /\ p e. U ) -> ( q ( +g ` P ) p ) = ( p ( +g ` P ) q ) ) |
| 69 |
44 54 24 68
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( q ( +g ` P ) p ) = ( p ( +g ` P ) q ) ) |
| 70 |
69
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( q ( +g ` P ) p ) ) = ( F ` ( p ( +g ` P ) q ) ) ) |
| 71 |
48 67 70
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) /\ ( F ` a ) = ( F ` p ) ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) q ) ) ) |
| 72 |
71
|
expl |
|- ( ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ p e. U ) /\ q e. U ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) q ) ) ) ) |
| 73 |
72
|
anasss |
|- ( ( ( ( ph /\ a e. U ) /\ b e. U ) /\ ( p e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) q ) ) ) ) |
| 74 |
15 73
|
sylanbr |
|- ( ( ( ph /\ ( a e. U /\ b e. U ) ) /\ ( p e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) q ) ) ) ) |
| 75 |
74
|
3impa |
|- ( ( ph /\ ( a e. U /\ b e. U ) /\ ( p e. U /\ q e. U ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` P ) b ) ) = ( F ` ( p ( +g ` P ) q ) ) ) ) |
| 76 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 77 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 78 |
|
simplr |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` a ) = ( F ` b ) ) |
| 79 |
|
simpr2 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> a e. U ) |
| 80 |
|
ovexd |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( a E M ) e. _V ) |
| 81 |
5 20 79 80
|
fvmptd3 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` a ) = ( a E M ) ) |
| 82 |
|
simpr3 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> b e. U ) |
| 83 |
|
ovexd |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( b E M ) e. _V ) |
| 84 |
5 50 82 83
|
fvmptd3 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` b ) = ( b E M ) ) |
| 85 |
78 81 84
|
3eqtr3d |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( a E M ) = ( b E M ) ) |
| 86 |
85
|
oveq2d |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( k ( .s ` P ) ( a E M ) ) = ( k ( .s ` P ) ( b E M ) ) ) |
| 87 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> R e. Ring ) |
| 88 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> M e. N ) |
| 89 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 90 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 91 |
|
simpr1 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> k e. ( Base ` ( Scalar ` P ) ) ) |
| 92 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 93 |
6 92
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 94 |
93
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 95 |
94
|
ad2antrr |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 96 |
91 95
|
eleqtrrd |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> k e. ( Base ` R ) ) |
| 97 |
1 2 4 3 87 79 88 89 90 96
|
r1pvsca |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( k ( .s ` P ) a ) E M ) = ( k ( .s ` P ) ( a E M ) ) ) |
| 98 |
1 2 4 3 87 82 88 89 90 96
|
r1pvsca |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( k ( .s ` P ) b ) E M ) = ( k ( .s ` P ) ( b E M ) ) ) |
| 99 |
86 97 98
|
3eqtr4d |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( k ( .s ` P ) a ) E M ) = ( ( k ( .s ` P ) b ) E M ) ) |
| 100 |
|
oveq1 |
|- ( f = ( k ( .s ` P ) a ) -> ( f E M ) = ( ( k ( .s ` P ) a ) E M ) ) |
| 101 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 102 |
87 101
|
syl |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> P e. LMod ) |
| 103 |
2 76 89 77 102 91 79
|
lmodvscld |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( k ( .s ` P ) a ) e. U ) |
| 104 |
|
ovexd |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( k ( .s ` P ) a ) E M ) e. _V ) |
| 105 |
5 100 103 104
|
fvmptd3 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` ( k ( .s ` P ) a ) ) = ( ( k ( .s ` P ) a ) E M ) ) |
| 106 |
|
oveq1 |
|- ( f = ( k ( .s ` P ) b ) -> ( f E M ) = ( ( k ( .s ` P ) b ) E M ) ) |
| 107 |
2 76 89 77 102 91 82
|
lmodvscld |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( k ( .s ` P ) b ) e. U ) |
| 108 |
|
ovexd |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( k ( .s ` P ) b ) E M ) e. _V ) |
| 109 |
5 106 107 108
|
fvmptd3 |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` ( k ( .s ` P ) b ) ) = ( ( k ( .s ` P ) b ) E M ) ) |
| 110 |
99 105 109
|
3eqtr4d |
|- ( ( ( ph /\ ( F ` a ) = ( F ` b ) ) /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( F ` ( k ( .s ` P ) a ) ) = ( F ` ( k ( .s ` P ) b ) ) ) |
| 111 |
110
|
an32s |
|- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) /\ ( F ` a ) = ( F ` b ) ) -> ( F ` ( k ( .s ` P ) a ) ) = ( F ` ( k ( .s ` P ) b ) ) ) |
| 112 |
111
|
ex |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` P ) ) /\ a e. U /\ b e. U ) ) -> ( ( F ` a ) = ( F ` b ) -> ( F ` ( k ( .s ` P ) a ) ) = ( F ` ( k ( .s ` P ) b ) ) ) ) |
| 113 |
6 101
|
syl |
|- ( ph -> P e. LMod ) |
| 114 |
2 13 14 75 76 77 112 113 89
|
imaslmhm |
|- ( ph -> ( ( F "s P ) e. LMod /\ F e. ( P LMHom ( F "s P ) ) ) ) |
| 115 |
114
|
simprd |
|- ( ph -> F e. ( P LMHom ( F "s P ) ) ) |