| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
| 3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
| 4 |
|
r1padd1.e |
|- E = ( rem1p ` R ) |
| 5 |
|
r1padd1.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
r1padd1.a |
|- ( ph -> A e. U ) |
| 7 |
|
r1padd1.d |
|- ( ph -> D e. N ) |
| 8 |
|
r1padd1.1 |
|- ( ph -> ( A E D ) = ( B E D ) ) |
| 9 |
|
r1padd1.2 |
|- .+ = ( +g ` P ) |
| 10 |
|
r1padd1.b |
|- ( ph -> B e. U ) |
| 11 |
|
r1padd1.c |
|- ( ph -> C e. U ) |
| 12 |
1 2 3
|
uc1pcl |
|- ( D e. N -> D e. U ) |
| 13 |
7 12
|
syl |
|- ( ph -> D e. U ) |
| 14 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
| 15 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 16 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 17 |
4 1 2 14 15 16
|
r1pval |
|- ( ( A e. U /\ D e. U ) -> ( A E D ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 18 |
6 13 17
|
syl2anc |
|- ( ph -> ( A E D ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 19 |
4 1 2 14 15 16
|
r1pval |
|- ( ( B e. U /\ D e. U ) -> ( B E D ) = ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 20 |
10 13 19
|
syl2anc |
|- ( ph -> ( B E D ) = ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 21 |
8 18 20
|
3eqtr3d |
|- ( ph -> ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) = ( ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 23 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
| 24 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 25 |
5 24
|
syl |
|- ( ph -> P e. Ring ) |
| 26 |
14 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ D e. N ) -> ( A ( quot1p ` R ) D ) e. U ) |
| 27 |
5 6 7 26
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) D ) e. U ) |
| 28 |
2 15 23 25 27 13
|
ringmneg1 |
|- ( ph -> ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) = ( ( invg ` P ) ` ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( ( A .+ C ) .+ ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( A .+ C ) .+ ( ( invg ` P ) ` ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 30 |
25
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 31 |
2 9 30 6 11
|
grpcld |
|- ( ph -> ( A .+ C ) e. U ) |
| 32 |
2 15 25 27 13
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) |
| 33 |
2 9 23 16
|
grpsubval |
|- ( ( ( A .+ C ) e. U /\ ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) -> ( ( A .+ C ) ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( A .+ C ) .+ ( ( invg ` P ) ` ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ph -> ( ( A .+ C ) ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( A .+ C ) .+ ( ( invg ` P ) ` ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 35 |
25
|
ringabld |
|- ( ph -> P e. Abel ) |
| 36 |
2 9 16
|
abladdsub |
|- ( ( P e. Abel /\ ( A e. U /\ C e. U /\ ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) ) -> ( ( A .+ C ) ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 37 |
35 6 11 32 36
|
syl13anc |
|- ( ph -> ( ( A .+ C ) ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 38 |
29 34 37
|
3eqtr2d |
|- ( ph -> ( ( A .+ C ) .+ ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 39 |
14 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ B e. U /\ D e. N ) -> ( B ( quot1p ` R ) D ) e. U ) |
| 40 |
5 10 7 39
|
syl3anc |
|- ( ph -> ( B ( quot1p ` R ) D ) e. U ) |
| 41 |
2 15 23 25 40 13
|
ringmneg1 |
|- ( ph -> ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) = ( ( invg ` P ) ` ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 42 |
41
|
oveq2d |
|- ( ph -> ( ( B .+ C ) .+ ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( B .+ C ) .+ ( ( invg ` P ) ` ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 43 |
2 9 30 10 11
|
grpcld |
|- ( ph -> ( B .+ C ) e. U ) |
| 44 |
2 15 25 40 13
|
ringcld |
|- ( ph -> ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) |
| 45 |
2 9 23 16
|
grpsubval |
|- ( ( ( B .+ C ) e. U /\ ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) -> ( ( B .+ C ) ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( B .+ C ) .+ ( ( invg ` P ) ` ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 46 |
43 44 45
|
syl2anc |
|- ( ph -> ( ( B .+ C ) ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( B .+ C ) .+ ( ( invg ` P ) ` ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 47 |
2 9 16
|
abladdsub |
|- ( ( P e. Abel /\ ( B e. U /\ C e. U /\ ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) ) -> ( ( B .+ C ) ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 48 |
35 10 11 44 47
|
syl13anc |
|- ( ph -> ( ( B .+ C ) ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 49 |
42 46 48
|
3eqtr2d |
|- ( ph -> ( ( B .+ C ) .+ ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( B ( -g ` P ) ( ( B ( quot1p ` R ) D ) ( .r ` P ) D ) ) .+ C ) ) |
| 50 |
22 38 49
|
3eqtr4d |
|- ( ph -> ( ( A .+ C ) .+ ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( B .+ C ) .+ ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ph -> ( ( ( A .+ C ) .+ ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) E D ) = ( ( ( B .+ C ) .+ ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) E D ) ) |
| 52 |
2 23 30 27
|
grpinvcld |
|- ( ph -> ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) e. U ) |
| 53 |
1 2 3 4 9 15 5 31 7 52
|
r1pcyc |
|- ( ph -> ( ( ( A .+ C ) .+ ( ( ( invg ` P ) ` ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) E D ) = ( ( A .+ C ) E D ) ) |
| 54 |
2 23 30 40
|
grpinvcld |
|- ( ph -> ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) e. U ) |
| 55 |
1 2 3 4 9 15 5 43 7 54
|
r1pcyc |
|- ( ph -> ( ( ( B .+ C ) .+ ( ( ( invg ` P ) ` ( B ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) E D ) = ( ( B .+ C ) E D ) ) |
| 56 |
51 53 55
|
3eqtr3d |
|- ( ph -> ( ( A .+ C ) E D ) = ( ( B .+ C ) E D ) ) |