| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 4 |
|
r1padd1.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 5 |
|
r1padd1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
r1padd1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 7 |
|
r1padd1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑁 ) |
| 8 |
|
r1padd1.1 |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐷 ) = ( 𝐵 𝐸 𝐷 ) ) |
| 9 |
|
r1padd1.2 |
⊢ + = ( +g ‘ 𝑃 ) |
| 10 |
|
r1padd1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 11 |
|
r1padd1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 12 |
1 2 3
|
uc1pcl |
⊢ ( 𝐷 ∈ 𝑁 → 𝐷 ∈ 𝑈 ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 17 |
4 1 2 14 15 16
|
r1pval |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) → ( 𝐴 𝐸 𝐷 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 18 |
6 13 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐷 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 19 |
4 1 2 14 15 16
|
r1pval |
⊢ ( ( 𝐵 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈 ) → ( 𝐵 𝐸 𝐷 ) = ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 20 |
10 13 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 𝐸 𝐷 ) = ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 21 |
8 18 20
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) = ( ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 23 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
| 24 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 26 |
14 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁 ) → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
| 27 |
5 6 7 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
| 28 |
2 15 23 25 27 13
|
ringmneg1 |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) = ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 30 |
25
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 31 |
2 9 30 6 11
|
grpcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) ∈ 𝑈 ) |
| 32 |
2 15 25 27 13
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) |
| 33 |
2 9 23 16
|
grpsubval |
⊢ ( ( ( 𝐴 + 𝐶 ) ∈ 𝑈 ∧ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 35 |
25
|
ringabld |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
| 36 |
2 9 16
|
abladdsub |
⊢ ( ( 𝑃 ∈ Abel ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ∧ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 37 |
35 6 11 32 36
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 38 |
29 34 37
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 39 |
14 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁 ) → ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
| 40 |
5 10 7 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ∈ 𝑈 ) |
| 41 |
2 15 23 25 40 13
|
ringmneg1 |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) = ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 43 |
2 9 30 10 11
|
grpcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) ∈ 𝑈 ) |
| 44 |
2 15 25 40 13
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) |
| 45 |
2 9 23 16
|
grpsubval |
⊢ ( ( ( 𝐵 + 𝐶 ) ∈ 𝑈 ∧ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) → ( ( 𝐵 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 46 |
43 44 45
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 + 𝐶 ) + ( ( invg ‘ 𝑃 ) ‘ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) ) |
| 47 |
2 9 16
|
abladdsub |
⊢ ( ( 𝑃 ∈ Abel ∧ ( 𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ∧ ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ∈ 𝑈 ) ) → ( ( 𝐵 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 48 |
35 10 11 44 47
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 49 |
42 46 48
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ( .r ‘ 𝑃 ) 𝐷 ) ) + 𝐶 ) ) |
| 50 |
22 38 49
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) = ( ( 𝐵 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) 𝐸 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) 𝐸 𝐷 ) ) |
| 52 |
2 23 30 27
|
grpinvcld |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ∈ 𝑈 ) |
| 53 |
1 2 3 4 9 15 5 31 7 52
|
r1pcyc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) 𝐸 𝐷 ) = ( ( 𝐴 + 𝐶 ) 𝐸 𝐷 ) ) |
| 54 |
2 23 30 40
|
grpinvcld |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ∈ 𝑈 ) |
| 55 |
1 2 3 4 9 15 5 43 7 54
|
r1pcyc |
⊢ ( 𝜑 → ( ( ( 𝐵 + 𝐶 ) + ( ( ( invg ‘ 𝑃 ) ‘ ( 𝐵 ( quot1p ‘ 𝑅 ) 𝐷 ) ) ( .r ‘ 𝑃 ) 𝐷 ) ) 𝐸 𝐷 ) = ( ( 𝐵 + 𝐶 ) 𝐸 𝐷 ) ) |
| 56 |
51 53 55
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐶 ) 𝐸 𝐷 ) = ( ( 𝐵 + 𝐶 ) 𝐸 𝐷 ) ) |