| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 4 |
|
r1padd1.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 5 |
|
r1pid2OLD.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 6 |
|
r1pid2OLD.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 7 |
|
r1pid2OLD.p |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 8 |
|
r1pid2OLD.q |
⊢ ( 𝜑 → 𝐵 ∈ 𝑁 ) |
| 9 |
5
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 13 |
1 2 3 10 4 11 12
|
r1pid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
| 14 |
9 7 8 13
|
syl3anc |
⊢ ( 𝜑 → 𝐴 = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) ) |
| 16 |
|
eqcom |
⊢ ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ↔ ( 𝐴 𝐸 𝐵 ) = ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ) |
| 17 |
15 16
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 19 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 20 |
9 19
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 21 |
20
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 22 |
4 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
| 23 |
9 7 8 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) |
| 24 |
2 12 18 21 23
|
grplidd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( 𝐴 𝐸 𝐵 ) ) ) |
| 26 |
10 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
| 27 |
9 7 8 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) |
| 28 |
1 2 3
|
uc1pcl |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈 ) |
| 29 |
8 28
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 30 |
2 11 20 27 29
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ) |
| 31 |
2 18
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
| 32 |
9 19 31
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝑈 ) |
| 33 |
2 12
|
grprcan |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ∈ 𝑈 ∧ ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐴 𝐸 𝐵 ) ∈ 𝑈 ) ) → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 34 |
21 30 32 23 33
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) = ( ( 0g ‘ 𝑃 ) ( +g ‘ 𝑃 ) ( 𝐴 𝐸 𝐵 ) ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 35 |
17 25 34
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 36 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 37 |
5 36
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 38 |
37
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 39 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 41 |
2 11
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ 𝐵 ∈ 𝑈 ∧ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) → ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ) |
| 42 |
40 29 27 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 44 |
5
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 45 |
1
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
| 47 |
1 18 3
|
uc1pn0 |
⊢ ( 𝐵 ∈ 𝑁 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
| 48 |
8 47
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ( 0g ‘ 𝑃 ) ) |
| 49 |
|
eqid |
⊢ ( RLReg ‘ 𝑃 ) = ( RLReg ‘ 𝑃 ) |
| 50 |
2 49 18
|
domnrrg |
⊢ ( ( 𝑃 ∈ Domn ∧ 𝐵 ∈ 𝑈 ∧ 𝐵 ≠ ( 0g ‘ 𝑃 ) ) → 𝐵 ∈ ( RLReg ‘ 𝑃 ) ) |
| 51 |
46 29 48 50
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( RLReg ‘ 𝑃 ) ) |
| 52 |
49 2 11 18
|
rrgeq0 |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐵 ∈ ( RLReg ‘ 𝑃 ) ∧ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ∈ 𝑈 ) → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 53 |
20 51 27 52
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 ( .r ‘ 𝑃 ) ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) ) = ( 0g ‘ 𝑃 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 54 |
35 43 53
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 55 |
2 11 18 20 29
|
ringlzd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) = ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) ) |
| 57 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 58 |
2 18 57
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ) → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
| 59 |
21 7 58
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( 0g ‘ 𝑃 ) ) = 𝐴 ) |
| 60 |
56 59
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) ) |
| 62 |
61
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) |
| 63 |
32
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ↔ ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ) ) |
| 64 |
10 1 2 6 57 11 3
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁 ) → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 65 |
9 7 8 64
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑃 ) ∈ 𝑈 ∧ ( 𝐷 ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 0g ‘ 𝑃 ) ( .r ‘ 𝑃 ) 𝐵 ) ) ) < ( 𝐷 ‘ 𝐵 ) ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 66 |
62 63 65
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ↔ ( 𝐴 ( quot1p ‘ 𝑅 ) 𝐵 ) = ( 0g ‘ 𝑃 ) ) ) |
| 67 |
54 66
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 𝐸 𝐵 ) = 𝐴 ↔ ( 𝐷 ‘ 𝐴 ) < ( 𝐷 ‘ 𝐵 ) ) ) |