| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1plmhm.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1plmhm.2 |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
r1plmhm.4 |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 4 |
|
r1plmhm.5 |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 5 |
|
r1plmhm.6 |
⊢ 𝐹 = ( 𝑓 ∈ 𝑈 ↦ ( 𝑓 𝐸 𝑀 ) ) |
| 6 |
|
r1plmhm.9 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
r1plmhm.10 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑁 ) |
| 8 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑓 ∈ 𝑈 ) |
| 10 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → 𝑀 ∈ 𝑁 ) |
| 11 |
3 1 2 4
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁 ) → ( 𝑓 𝐸 𝑀 ) ∈ 𝑈 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑈 ) → ( 𝑓 𝐸 𝑀 ) ∈ 𝑈 ) |
| 13 |
12 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 15 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ↔ ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) ) |
| 16 |
6
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑅 ∈ Ring ) |
| 17 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑎 ∈ 𝑈 ) |
| 18 |
7
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑀 ∈ 𝑁 ) |
| 19 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 𝐸 𝑀 ) = ( 𝑎 𝐸 𝑀 ) ) |
| 21 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑎 𝐸 𝑀 ) ∈ V ) |
| 22 |
5 20 17 21
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝑎 𝐸 𝑀 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑓 = 𝑝 → ( 𝑓 𝐸 𝑀 ) = ( 𝑝 𝐸 𝑀 ) ) |
| 24 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑝 ∈ 𝑈 ) |
| 25 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑝 𝐸 𝑀 ) ∈ V ) |
| 26 |
5 23 24 25
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑝 ) = ( 𝑝 𝐸 𝑀 ) ) |
| 27 |
19 22 26
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑎 𝐸 𝑀 ) = ( 𝑝 𝐸 𝑀 ) ) |
| 28 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑏 ∈ 𝑈 ) |
| 29 |
1 2 4 3 16 17 18 27 14 24 28
|
r1padd1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) = ( ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 30 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 31 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 32 |
6 31
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 33 |
32
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 34 |
33
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑃 ∈ Grp ) |
| 35 |
2 14 34 17 28
|
grpcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝑈 ) |
| 36 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ∈ V ) |
| 37 |
5 30 35 36
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 39 |
2 14 34 24 28
|
grpcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝑈 ) |
| 40 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ∈ V ) |
| 41 |
5 38 39 40
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 42 |
29 37 41
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) ) ) |
| 43 |
32
|
ringabld |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
| 44 |
43
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑃 ∈ Abel ) |
| 45 |
2 14
|
ablcom |
⊢ ( ( 𝑃 ∈ Abel ∧ 𝑝 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) |
| 46 |
44 24 28 45
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) ) |
| 48 |
42 47
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) ) |
| 49 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 50 |
|
oveq1 |
⊢ ( 𝑓 = 𝑏 → ( 𝑓 𝐸 𝑀 ) = ( 𝑏 𝐸 𝑀 ) ) |
| 51 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑏 𝐸 𝑀 ) ∈ V ) |
| 52 |
5 50 28 51
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 𝐸 𝑀 ) ) |
| 53 |
|
oveq1 |
⊢ ( 𝑓 = 𝑞 → ( 𝑓 𝐸 𝑀 ) = ( 𝑞 𝐸 𝑀 ) ) |
| 54 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → 𝑞 ∈ 𝑈 ) |
| 55 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑞 𝐸 𝑀 ) ∈ V ) |
| 56 |
5 53 54 55
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑞 ) = ( 𝑞 𝐸 𝑀 ) ) |
| 57 |
49 52 56
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑏 𝐸 𝑀 ) = ( 𝑞 𝐸 𝑀 ) ) |
| 58 |
1 2 4 3 16 28 18 57 14 54 24
|
r1padd1 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ) |
| 60 |
2 14 34 28 24
|
grpcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ∈ 𝑈 ) |
| 61 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ∈ V ) |
| 62 |
5 59 60 61
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) = ( ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ) |
| 64 |
2 14 34 54 24
|
grpcld |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) ∈ 𝑈 ) |
| 65 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ∈ V ) |
| 66 |
5 63 64 65
|
fvmptd3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) 𝐸 𝑀 ) ) |
| 67 |
58 62 66
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑃 ) 𝑝 ) ) = ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) ) ) |
| 68 |
2 14
|
ablcom |
⊢ ( ( 𝑃 ∈ Abel ∧ 𝑞 ∈ 𝑈 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) = ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) |
| 69 |
44 54 24 68
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) = ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) |
| 70 |
69
|
fveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑝 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) |
| 71 |
48 67 70
|
3eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) |
| 72 |
71
|
expl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑈 ) ∧ 𝑞 ∈ 𝑈 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 73 |
72
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) ∧ ( 𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 74 |
15 73
|
sylanbr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) ∧ ( 𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 75 |
74
|
3impa |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ ( 𝑝 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑃 ) 𝑞 ) ) ) ) |
| 76 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 77 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 78 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 79 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑈 ) |
| 80 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 𝐸 𝑀 ) ∈ V ) |
| 81 |
5 20 79 80
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝑎 𝐸 𝑀 ) ) |
| 82 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) |
| 83 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑏 𝐸 𝑀 ) ∈ V ) |
| 84 |
5 50 82 83
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 𝐸 𝑀 ) ) |
| 85 |
78 81 84
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 𝐸 𝑀 ) = ( 𝑏 𝐸 𝑀 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) ( 𝑎 𝐸 𝑀 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) ( 𝑏 𝐸 𝑀 ) ) ) |
| 87 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
| 88 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑀 ∈ 𝑁 ) |
| 89 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 90 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 91 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 92 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 93 |
6 92
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 94 |
93
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 96 |
91 95
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑘 ∈ ( Base ‘ 𝑅 ) ) |
| 97 |
1 2 4 3 87 79 88 89 90 96
|
r1pvsca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) 𝐸 𝑀 ) = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) ( 𝑎 𝐸 𝑀 ) ) ) |
| 98 |
1 2 4 3 87 82 88 89 90 96
|
r1pvsca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) ( 𝑏 𝐸 𝑀 ) ) ) |
| 99 |
86 97 98
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) 𝐸 𝑀 ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 100 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) 𝐸 𝑀 ) ) |
| 101 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 102 |
87 101
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑃 ∈ LMod ) |
| 103 |
2 76 89 77 102 91 79
|
lmodvscld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ∈ 𝑈 ) |
| 104 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) 𝐸 𝑀 ) ∈ V ) |
| 105 |
5 100 103 104
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) 𝐸 𝑀 ) ) |
| 106 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) → ( 𝑓 𝐸 𝑀 ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 107 |
2 76 89 77 102 91 82
|
lmodvscld |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝑈 ) |
| 108 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ∈ V ) |
| 109 |
5 106 107 108
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) 𝐸 𝑀 ) ) |
| 110 |
99 105 109
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ) ) |
| 111 |
110
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ) ) |
| 112 |
111
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ) ) ) |
| 113 |
6 101
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 114 |
2 13 14 75 76 77 112 113 89
|
imaslmhm |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑃 ) ∈ LMod ∧ 𝐹 ∈ ( 𝑃 LMHom ( 𝐹 “s 𝑃 ) ) ) ) |
| 115 |
114
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 LMHom ( 𝐹 “s 𝑃 ) ) ) |