| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
| 3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
| 4 |
|
r1padd1.e |
|- E = ( rem1p ` R ) |
| 5 |
|
r1pvsca.6 |
|- ( ph -> R e. Ring ) |
| 6 |
|
r1pvsca.7 |
|- ( ph -> A e. U ) |
| 7 |
|
r1pvsca.10 |
|- ( ph -> D e. N ) |
| 8 |
|
r1pvsca.1 |
|- .X. = ( .s ` P ) |
| 9 |
|
r1pvsca.k |
|- K = ( Base ` R ) |
| 10 |
|
r1pvsca.2 |
|- ( ph -> B e. K ) |
| 11 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
| 12 |
11 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ D e. N ) -> ( A ( quot1p ` R ) D ) e. U ) |
| 13 |
5 6 7 12
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) D ) e. U ) |
| 14 |
1 2 3
|
uc1pcl |
|- ( D e. N -> D e. U ) |
| 15 |
7 14
|
syl |
|- ( ph -> D e. U ) |
| 16 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 17 |
1 16 2 9 8
|
ply1ass23l |
|- ( ( R e. Ring /\ ( B e. K /\ ( A ( quot1p ` R ) D ) e. U /\ D e. U ) ) -> ( ( B .X. ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) = ( B .X. ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 18 |
5 10 13 15 17
|
syl13anc |
|- ( ph -> ( ( B .X. ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) = ( B .X. ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) = ( ( B .X. A ) ( -g ` P ) ( B .X. ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 20 |
1 2 3 11 5 6 7 8 9 10
|
q1pvsca |
|- ( ph -> ( ( B .X. A ) ( quot1p ` R ) D ) = ( B .X. ( A ( quot1p ` R ) D ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( ( ( B .X. A ) ( quot1p ` R ) D ) ( .r ` P ) D ) = ( ( B .X. ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( ( B .X. A ) ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ( quot1p ` R ) D ) ) ( .r ` P ) D ) ) ) |
| 23 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 24 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 25 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 26 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 27 |
5 26
|
syl |
|- ( ph -> P e. LMod ) |
| 28 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 29 |
5 28
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 30 |
29
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 31 |
9 30
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` P ) ) ) |
| 32 |
10 31
|
eleqtrd |
|- ( ph -> B e. ( Base ` ( Scalar ` P ) ) ) |
| 33 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 34 |
5 33
|
syl |
|- ( ph -> P e. Ring ) |
| 35 |
2 16 34 13 15
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) e. U ) |
| 36 |
2 8 23 24 25 27 32 6 35
|
lmodsubdi |
|- ( ph -> ( B .X. ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) = ( ( B .X. A ) ( -g ` P ) ( B .X. ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 37 |
19 22 36
|
3eqtr4d |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( ( B .X. A ) ( quot1p ` R ) D ) ( .r ` P ) D ) ) = ( B .X. ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 38 |
2 23 8 24 27 32 6
|
lmodvscld |
|- ( ph -> ( B .X. A ) e. U ) |
| 39 |
4 1 2 11 16 25
|
r1pval |
|- ( ( ( B .X. A ) e. U /\ D e. U ) -> ( ( B .X. A ) E D ) = ( ( B .X. A ) ( -g ` P ) ( ( ( B .X. A ) ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 40 |
38 15 39
|
syl2anc |
|- ( ph -> ( ( B .X. A ) E D ) = ( ( B .X. A ) ( -g ` P ) ( ( ( B .X. A ) ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 41 |
4 1 2 11 16 25
|
r1pval |
|- ( ( A e. U /\ D e. U ) -> ( A E D ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 42 |
6 15 41
|
syl2anc |
|- ( ph -> ( A E D ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( B .X. ( A E D ) ) = ( B .X. ( A ( -g ` P ) ( ( A ( quot1p ` R ) D ) ( .r ` P ) D ) ) ) ) |
| 44 |
37 40 43
|
3eqtr4d |
|- ( ph -> ( ( B .X. A ) E D ) = ( B .X. ( A E D ) ) ) |