| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
| 3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
| 4 |
|
q1pdir.d |
|- ./ = ( quot1p ` R ) |
| 5 |
|
q1pdir.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
q1pdir.a |
|- ( ph -> A e. U ) |
| 7 |
|
q1pdir.c |
|- ( ph -> C e. N ) |
| 8 |
|
q1pvsca.1 |
|- .X. = ( .s ` P ) |
| 9 |
|
q1pvsca.k |
|- K = ( Base ` R ) |
| 10 |
|
q1pvsca.8 |
|- ( ph -> B e. K ) |
| 11 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 12 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 13 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 14 |
5 13
|
syl |
|- ( ph -> P e. LMod ) |
| 15 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 16 |
5 15
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 18 |
9 17
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` P ) ) ) |
| 19 |
10 18
|
eleqtrd |
|- ( ph -> B e. ( Base ` ( Scalar ` P ) ) ) |
| 20 |
2 11 8 12 14 19 6
|
lmodvscld |
|- ( ph -> ( B .X. A ) e. U ) |
| 21 |
4 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ C e. N ) -> ( A ./ C ) e. U ) |
| 22 |
5 6 7 21
|
syl3anc |
|- ( ph -> ( A ./ C ) e. U ) |
| 23 |
2 11 8 12 14 19 22
|
lmodvscld |
|- ( ph -> ( B .X. ( A ./ C ) ) e. U ) |
| 24 |
14
|
lmodgrpd |
|- ( ph -> P e. Grp ) |
| 25 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 26 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 27 |
5 26
|
syl |
|- ( ph -> P e. Ring ) |
| 28 |
1 2 3
|
uc1pcl |
|- ( C e. N -> C e. U ) |
| 29 |
7 28
|
syl |
|- ( ph -> C e. U ) |
| 30 |
2 25 27 23 29
|
ringcld |
|- ( ph -> ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) e. U ) |
| 31 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 32 |
2 31
|
grpsubcl |
|- ( ( P e. Grp /\ ( B .X. A ) e. U /\ ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) e. U ) -> ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) e. U ) |
| 33 |
24 20 30 32
|
syl3anc |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) e. U ) |
| 34 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 35 |
34 1 2
|
deg1xrcl |
|- ( ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) e. U -> ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) e. RR* ) |
| 36 |
33 35
|
syl |
|- ( ph -> ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) e. RR* ) |
| 37 |
|
eqid |
|- ( rem1p ` R ) = ( rem1p ` R ) |
| 38 |
37 1 2 4 25 31
|
r1pval |
|- ( ( A e. U /\ C e. U ) -> ( A ( rem1p ` R ) C ) = ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) |
| 39 |
6 29 38
|
syl2anc |
|- ( ph -> ( A ( rem1p ` R ) C ) = ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) |
| 40 |
2 25 27 22 29
|
ringcld |
|- ( ph -> ( ( A ./ C ) ( .r ` P ) C ) e. U ) |
| 41 |
2 31
|
grpsubcl |
|- ( ( P e. Grp /\ A e. U /\ ( ( A ./ C ) ( .r ` P ) C ) e. U ) -> ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) e. U ) |
| 42 |
24 6 40 41
|
syl3anc |
|- ( ph -> ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) e. U ) |
| 43 |
39 42
|
eqeltrd |
|- ( ph -> ( A ( rem1p ` R ) C ) e. U ) |
| 44 |
34 1 2
|
deg1xrcl |
|- ( ( A ( rem1p ` R ) C ) e. U -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) e. RR* ) |
| 45 |
43 44
|
syl |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) e. RR* ) |
| 46 |
34 1 2
|
deg1xrcl |
|- ( C e. U -> ( ( deg1 ` R ) ` C ) e. RR* ) |
| 47 |
29 46
|
syl |
|- ( ph -> ( ( deg1 ` R ) ` C ) e. RR* ) |
| 48 |
1 34 5 2 9 8 10 42
|
deg1vscale |
|- ( ph -> ( ( deg1 ` R ) ` ( B .X. ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) <_ ( ( deg1 ` R ) ` ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
| 49 |
1 25 2 9 8
|
ply1ass23l |
|- ( ( R e. Ring /\ ( B e. K /\ ( A ./ C ) e. U /\ C e. U ) ) -> ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) = ( B .X. ( ( A ./ C ) ( .r ` P ) C ) ) ) |
| 50 |
5 10 22 29 49
|
syl13anc |
|- ( ph -> ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) = ( B .X. ( ( A ./ C ) ( .r ` P ) C ) ) ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) = ( ( B .X. A ) ( -g ` P ) ( B .X. ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
| 52 |
2 8 11 12 31 14 19 6 40
|
lmodsubdi |
|- ( ph -> ( B .X. ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) = ( ( B .X. A ) ( -g ` P ) ( B .X. ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
| 53 |
51 52
|
eqtr4d |
|- ( ph -> ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) = ( B .X. ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ph -> ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) = ( ( deg1 ` R ) ` ( B .X. ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) ) |
| 55 |
39
|
fveq2d |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) = ( ( deg1 ` R ) ` ( A ( -g ` P ) ( ( A ./ C ) ( .r ` P ) C ) ) ) ) |
| 56 |
48 54 55
|
3brtr4d |
|- ( ph -> ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) <_ ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) ) |
| 57 |
37 1 2 3 34
|
r1pdeglt |
|- ( ( R e. Ring /\ A e. U /\ C e. N ) -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
| 58 |
5 6 7 57
|
syl3anc |
|- ( ph -> ( ( deg1 ` R ) ` ( A ( rem1p ` R ) C ) ) < ( ( deg1 ` R ) ` C ) ) |
| 59 |
36 45 47 56 58
|
xrlelttrd |
|- ( ph -> ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) |
| 60 |
4 1 2 34 31 25 3
|
q1peqb |
|- ( ( R e. Ring /\ ( B .X. A ) e. U /\ C e. N ) -> ( ( ( B .X. ( A ./ C ) ) e. U /\ ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) <-> ( ( B .X. A ) ./ C ) = ( B .X. ( A ./ C ) ) ) ) |
| 61 |
60
|
biimpa |
|- ( ( ( R e. Ring /\ ( B .X. A ) e. U /\ C e. N ) /\ ( ( B .X. ( A ./ C ) ) e. U /\ ( ( deg1 ` R ) ` ( ( B .X. A ) ( -g ` P ) ( ( B .X. ( A ./ C ) ) ( .r ` P ) C ) ) ) < ( ( deg1 ` R ) ` C ) ) ) -> ( ( B .X. A ) ./ C ) = ( B .X. ( A ./ C ) ) ) |
| 62 |
5 20 7 23 59 61
|
syl32anc |
|- ( ph -> ( ( B .X. A ) ./ C ) = ( B .X. ( A ./ C ) ) ) |