| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1ass23l.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1ass23l.t |
|- .X. = ( .r ` P ) |
| 3 |
|
ply1ass23l.b |
|- B = ( Base ` P ) |
| 4 |
|
ply1ass23l.k |
|- K = ( Base ` R ) |
| 5 |
|
ply1ass23l.n |
|- .x. = ( .s ` P ) |
| 6 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 7 |
|
1on |
|- 1o e. On |
| 8 |
7
|
a1i |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> 1o e. On ) |
| 9 |
|
simpl |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> R e. Ring ) |
| 10 |
|
eqid |
|- { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |
| 11 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 12 |
1 11 2
|
ply1mulr |
|- .X. = ( .r ` ( 1o mPoly R ) ) |
| 13 |
11 6 12
|
mplmulr |
|- .X. = ( .r ` ( 1o mPwSer R ) ) |
| 14 |
|
eqid |
|- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
| 15 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 16 |
11 6 15 14
|
mplbasss |
|- ( Base ` ( 1o mPoly R ) ) C_ ( Base ` ( 1o mPwSer R ) ) |
| 17 |
1 3
|
ply1bascl2 |
|- ( X e. B -> X e. ( Base ` ( 1o mPoly R ) ) ) |
| 18 |
16 17
|
sselid |
|- ( X e. B -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( A e. K /\ X e. B /\ Y e. B ) -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 20 |
19
|
adantl |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> X e. ( Base ` ( 1o mPwSer R ) ) ) |
| 21 |
1 3
|
ply1bascl2 |
|- ( Y e. B -> Y e. ( Base ` ( 1o mPoly R ) ) ) |
| 22 |
16 21
|
sselid |
|- ( Y e. B -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( A e. K /\ X e. B /\ Y e. B ) -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 24 |
23
|
adantl |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> Y e. ( Base ` ( 1o mPwSer R ) ) ) |
| 25 |
1 11 5
|
ply1vsca |
|- .x. = ( .s ` ( 1o mPoly R ) ) |
| 26 |
11 6 25
|
mplvsca2 |
|- .x. = ( .s ` ( 1o mPwSer R ) ) |
| 27 |
|
simpr1 |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> A e. K ) |
| 28 |
6 8 9 10 13 14 20 24 4 26 27
|
psrass23l |
|- ( ( R e. Ring /\ ( A e. K /\ X e. B /\ Y e. B ) ) -> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) |