Step |
Hyp |
Ref |
Expression |
1 |
|
ply1ass23l.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1ass23l.t |
⊢ × = ( .r ‘ 𝑃 ) |
3 |
|
ply1ass23l.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
ply1ass23l.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
ply1ass23l.n |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
7
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 1o ∈ On ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
11 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
12 |
1 11 2
|
ply1mulr |
⊢ × = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
13 |
11 6 12
|
mplmulr |
⊢ × = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
16 |
11 6 15 14
|
mplbasss |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
17 |
1 3
|
ply1bascl2 |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
18 |
16 17
|
sselid |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
21 |
1 3
|
ply1bascl2 |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
22 |
16 21
|
sselid |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
25 |
1 11 5
|
ply1vsca |
⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
26 |
11 6 25
|
mplvsca2 |
⊢ · = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
27 |
|
simpr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐾 ) |
28 |
6 8 9 10 13 14 20 24 4 26 27
|
psrass23l |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |