| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1sclrmsm.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ply1sclrmsm.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | ply1sclrmsm.b | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | ply1sclrmsm.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | ply1sclrmsm.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | ply1sclrmsm.m | ⊢  ×   =  ( .r ‘ 𝑃 ) | 
						
							| 7 |  | ply1sclrmsm.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 8 |  | ply1sclrmsm.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 9 |  | ply1sclrmsm.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 | 2 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 12 | 1 11 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹  ∈  𝐾  ↔  𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) | 
						
							| 14 | 13 | biimpa | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 18 | 9 15 16 5 17 | asclval | ⊢ ( 𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  →  ( 𝐴 ‘ 𝐹 )  =  ( 𝐹  ·  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 19 | 14 18 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  ( 𝐴 ‘ 𝐹 )  =  ( 𝐹  ·  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( 𝐴 ‘ 𝐹 )  =  ( 𝐹  ·  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( ( 𝐴 ‘ 𝐹 )  ×  𝑍 )  =  ( ( 𝐹  ·  ( 1r ‘ 𝑃 ) )  ×  𝑍 ) ) | 
						
							| 22 |  | simp1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  𝑅  ∈  Ring ) | 
						
							| 23 | 1 | eleq2i | ⊢ ( 𝐹  ∈  𝐾  ↔  𝐹  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 23 | biimpi | ⊢ ( 𝐹  ∈  𝐾  →  𝐹  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  𝐹  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 27 | 3 17 | ringidcl | ⊢ ( 𝑃  ∈  Ring  →  ( 1r ‘ 𝑃 )  ∈  𝐸 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑃 )  ∈  𝐸 ) | 
						
							| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( 1r ‘ 𝑃 )  ∈  𝐸 ) | 
						
							| 30 |  | simp3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  𝑍  ∈  𝐸 ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 32 | 2 6 3 31 5 | ply1ass23l | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐹  ∈  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑃 )  ∈  𝐸  ∧  𝑍  ∈  𝐸 ) )  →  ( ( 𝐹  ·  ( 1r ‘ 𝑃 ) )  ×  𝑍 )  =  ( 𝐹  ·  ( ( 1r ‘ 𝑃 )  ×  𝑍 ) ) ) | 
						
							| 33 | 22 25 29 30 32 | syl13anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( ( 𝐹  ·  ( 1r ‘ 𝑃 ) )  ×  𝑍 )  =  ( 𝐹  ·  ( ( 1r ‘ 𝑃 )  ×  𝑍 ) ) ) | 
						
							| 34 | 3 6 17 | ringlidm | ⊢ ( ( 𝑃  ∈  Ring  ∧  𝑍  ∈  𝐸 )  →  ( ( 1r ‘ 𝑃 )  ×  𝑍 )  =  𝑍 ) | 
						
							| 35 | 26 34 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑍  ∈  𝐸 )  →  ( ( 1r ‘ 𝑃 )  ×  𝑍 )  =  𝑍 ) | 
						
							| 36 | 35 | 3adant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( ( 1r ‘ 𝑃 )  ×  𝑍 )  =  𝑍 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( 𝐹  ·  ( ( 1r ‘ 𝑃 )  ×  𝑍 ) )  =  ( 𝐹  ·  𝑍 ) ) | 
						
							| 38 | 21 33 37 | 3eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾  ∧  𝑍  ∈  𝐸 )  →  ( ( 𝐴 ‘ 𝐹 )  ×  𝑍 )  =  ( 𝐹  ·  𝑍 ) ) |