Step |
Hyp |
Ref |
Expression |
1 |
|
ply1sclrmsm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
ply1sclrmsm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
ply1sclrmsm.b |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
4 |
|
ply1sclrmsm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
ply1sclrmsm.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
ply1sclrmsm.m |
⊢ × = ( .r ‘ 𝑃 ) |
7 |
|
ply1sclrmsm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
8 |
|
ply1sclrmsm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
9 |
|
ply1sclrmsm.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
10 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
12 |
1 11
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐾 ↔ 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
14 |
13
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
17 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
18 |
9 15 16 5 17
|
asclval |
⊢ ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
19 |
14 18
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( ( 𝐴 ‘ 𝐹 ) × 𝑍 ) = ( ( 𝐹 · ( 1r ‘ 𝑃 ) ) × 𝑍 ) ) |
22 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → 𝑅 ∈ Ring ) |
23 |
1
|
eleq2i |
⊢ ( 𝐹 ∈ 𝐾 ↔ 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
24 |
23
|
biimpi |
⊢ ( 𝐹 ∈ 𝐾 → 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
26 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
27 |
3 17
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐸 ) |
28 |
26 27
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐸 ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( 1r ‘ 𝑃 ) ∈ 𝐸 ) |
30 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → 𝑍 ∈ 𝐸 ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
32 |
2 6 3 31 5
|
ply1ass23l |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑃 ) ∈ 𝐸 ∧ 𝑍 ∈ 𝐸 ) ) → ( ( 𝐹 · ( 1r ‘ 𝑃 ) ) × 𝑍 ) = ( 𝐹 · ( ( 1r ‘ 𝑃 ) × 𝑍 ) ) ) |
33 |
22 25 29 30 32
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( ( 𝐹 · ( 1r ‘ 𝑃 ) ) × 𝑍 ) = ( 𝐹 · ( ( 1r ‘ 𝑃 ) × 𝑍 ) ) ) |
34 |
3 6 17
|
ringlidm |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑍 ∈ 𝐸 ) → ( ( 1r ‘ 𝑃 ) × 𝑍 ) = 𝑍 ) |
35 |
26 34
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐸 ) → ( ( 1r ‘ 𝑃 ) × 𝑍 ) = 𝑍 ) |
36 |
35
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( ( 1r ‘ 𝑃 ) × 𝑍 ) = 𝑍 ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( 𝐹 · ( ( 1r ‘ 𝑃 ) × 𝑍 ) ) = ( 𝐹 · 𝑍 ) ) |
38 |
21 33 37
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸 ) → ( ( 𝐴 ‘ 𝐹 ) × 𝑍 ) = ( 𝐹 · 𝑍 ) ) |