Metamath Proof Explorer


Theorem ply1sclrmsm

Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1sclrmsm.k 𝐾 = ( Base ‘ 𝑅 )
ply1sclrmsm.p 𝑃 = ( Poly1𝑅 )
ply1sclrmsm.b 𝐸 = ( Base ‘ 𝑃 )
ply1sclrmsm.x 𝑋 = ( var1𝑅 )
ply1sclrmsm.s · = ( ·𝑠𝑃 )
ply1sclrmsm.m × = ( .r𝑃 )
ply1sclrmsm.n 𝑁 = ( mulGrp ‘ 𝑃 )
ply1sclrmsm.e = ( .g𝑁 )
ply1sclrmsm.a 𝐴 = ( algSc ‘ 𝑃 )
Assertion ply1sclrmsm ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( ( 𝐴𝐹 ) × 𝑍 ) = ( 𝐹 · 𝑍 ) )

Proof

Step Hyp Ref Expression
1 ply1sclrmsm.k 𝐾 = ( Base ‘ 𝑅 )
2 ply1sclrmsm.p 𝑃 = ( Poly1𝑅 )
3 ply1sclrmsm.b 𝐸 = ( Base ‘ 𝑃 )
4 ply1sclrmsm.x 𝑋 = ( var1𝑅 )
5 ply1sclrmsm.s · = ( ·𝑠𝑃 )
6 ply1sclrmsm.m × = ( .r𝑃 )
7 ply1sclrmsm.n 𝑁 = ( mulGrp ‘ 𝑃 )
8 ply1sclrmsm.e = ( .g𝑁 )
9 ply1sclrmsm.a 𝐴 = ( algSc ‘ 𝑃 )
10 2 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
11 10 fveq2d ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
12 1 11 eqtrid ( 𝑅 ∈ Ring → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
13 12 eleq2d ( 𝑅 ∈ Ring → ( 𝐹𝐾𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) )
14 13 biimpa ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾 ) → 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
15 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
16 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
17 eqid ( 1r𝑃 ) = ( 1r𝑃 )
18 9 15 16 5 17 asclval ( 𝐹 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝐴𝐹 ) = ( 𝐹 · ( 1r𝑃 ) ) )
19 14 18 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾 ) → ( 𝐴𝐹 ) = ( 𝐹 · ( 1r𝑃 ) ) )
20 19 3adant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( 𝐴𝐹 ) = ( 𝐹 · ( 1r𝑃 ) ) )
21 20 oveq1d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( ( 𝐴𝐹 ) × 𝑍 ) = ( ( 𝐹 · ( 1r𝑃 ) ) × 𝑍 ) )
22 simp1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → 𝑅 ∈ Ring )
23 1 eleq2i ( 𝐹𝐾𝐹 ∈ ( Base ‘ 𝑅 ) )
24 23 biimpi ( 𝐹𝐾𝐹 ∈ ( Base ‘ 𝑅 ) )
25 24 3ad2ant2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → 𝐹 ∈ ( Base ‘ 𝑅 ) )
26 2 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
27 3 17 ringidcl ( 𝑃 ∈ Ring → ( 1r𝑃 ) ∈ 𝐸 )
28 26 27 syl ( 𝑅 ∈ Ring → ( 1r𝑃 ) ∈ 𝐸 )
29 28 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( 1r𝑃 ) ∈ 𝐸 )
30 simp3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → 𝑍𝐸 )
31 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
32 2 6 3 31 5 ply1ass23l ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ∈ ( Base ‘ 𝑅 ) ∧ ( 1r𝑃 ) ∈ 𝐸𝑍𝐸 ) ) → ( ( 𝐹 · ( 1r𝑃 ) ) × 𝑍 ) = ( 𝐹 · ( ( 1r𝑃 ) × 𝑍 ) ) )
33 22 25 29 30 32 syl13anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( ( 𝐹 · ( 1r𝑃 ) ) × 𝑍 ) = ( 𝐹 · ( ( 1r𝑃 ) × 𝑍 ) ) )
34 3 6 17 ringlidm ( ( 𝑃 ∈ Ring ∧ 𝑍𝐸 ) → ( ( 1r𝑃 ) × 𝑍 ) = 𝑍 )
35 26 34 sylan ( ( 𝑅 ∈ Ring ∧ 𝑍𝐸 ) → ( ( 1r𝑃 ) × 𝑍 ) = 𝑍 )
36 35 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( ( 1r𝑃 ) × 𝑍 ) = 𝑍 )
37 36 oveq2d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( 𝐹 · ( ( 1r𝑃 ) × 𝑍 ) ) = ( 𝐹 · 𝑍 ) )
38 21 33 37 3eqtrd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐾𝑍𝐸 ) → ( ( 𝐴𝐹 ) × 𝑍 ) = ( 𝐹 · 𝑍 ) )