Step |
Hyp |
Ref |
Expression |
1 |
|
ply1sclrmsm.k |
|
2 |
|
ply1sclrmsm.p |
|
3 |
|
ply1sclrmsm.b |
|
4 |
|
ply1sclrmsm.x |
|
5 |
|
ply1sclrmsm.s |
|
6 |
|
ply1sclrmsm.m |
|
7 |
|
ply1sclrmsm.n |
|
8 |
|
ply1sclrmsm.e |
|
9 |
|
ply1sclrmsm.a |
|
10 |
2
|
ply1sca |
|
11 |
10
|
fveq2d |
|
12 |
1 11
|
eqtrid |
|
13 |
12
|
eleq2d |
|
14 |
13
|
biimpa |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
9 15 16 5 17
|
asclval |
|
19 |
14 18
|
syl |
|
20 |
19
|
3adant3 |
|
21 |
20
|
oveq1d |
|
22 |
|
simp1 |
|
23 |
1
|
eleq2i |
|
24 |
23
|
biimpi |
|
25 |
24
|
3ad2ant2 |
|
26 |
2
|
ply1ring |
|
27 |
3 17
|
ringidcl |
|
28 |
26 27
|
syl |
|
29 |
28
|
3ad2ant1 |
|
30 |
|
simp3 |
|
31 |
|
eqid |
|
32 |
2 6 3 31 5
|
ply1ass23l |
|
33 |
22 25 29 30 32
|
syl13anc |
|
34 |
3 6 17
|
ringlidm |
|
35 |
26 34
|
sylan |
|
36 |
35
|
3adant2 |
|
37 |
36
|
oveq2d |
|
38 |
21 33 37
|
3eqtrd |
|