| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1sclrmsm.k |  | 
						
							| 2 |  | ply1sclrmsm.p |  | 
						
							| 3 |  | ply1sclrmsm.b |  | 
						
							| 4 |  | ply1sclrmsm.x |  | 
						
							| 5 |  | ply1sclrmsm.s |  | 
						
							| 6 |  | ply1sclrmsm.m |  | 
						
							| 7 |  | ply1sclrmsm.n |  | 
						
							| 8 |  | ply1sclrmsm.e |  | 
						
							| 9 |  | ply1sclrmsm.a |  | 
						
							| 10 | 2 | ply1sca |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 | 1 11 | eqtrid |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 | 13 | biimpa |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 9 15 16 5 17 | asclval |  | 
						
							| 19 | 14 18 | syl |  | 
						
							| 20 | 19 | 3adant3 |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 |  | simp1 |  | 
						
							| 23 | 1 | eleq2i |  | 
						
							| 24 | 23 | biimpi |  | 
						
							| 25 | 24 | 3ad2ant2 |  | 
						
							| 26 | 2 | ply1ring |  | 
						
							| 27 | 3 17 | ringidcl |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | 3ad2ant1 |  | 
						
							| 30 |  | simp3 |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 2 6 3 31 5 | ply1ass23l |  | 
						
							| 33 | 22 25 29 30 32 | syl13anc |  | 
						
							| 34 | 3 6 17 | ringlidm |  | 
						
							| 35 | 26 34 | sylan |  | 
						
							| 36 | 35 | 3adant2 |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 21 33 37 | 3eqtrd |  |