Metamath Proof Explorer


Theorem ply1sclrmsm

Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1sclrmsm.k K = Base R
ply1sclrmsm.p P = Poly 1 R
ply1sclrmsm.b E = Base P
ply1sclrmsm.x X = var 1 R
ply1sclrmsm.s · ˙ = P
ply1sclrmsm.m × ˙ = P
ply1sclrmsm.n N = mulGrp P
ply1sclrmsm.e × ˙ = N
ply1sclrmsm.a A = algSc P
Assertion ply1sclrmsm R Ring F K Z E A F × ˙ Z = F · ˙ Z

Proof

Step Hyp Ref Expression
1 ply1sclrmsm.k K = Base R
2 ply1sclrmsm.p P = Poly 1 R
3 ply1sclrmsm.b E = Base P
4 ply1sclrmsm.x X = var 1 R
5 ply1sclrmsm.s · ˙ = P
6 ply1sclrmsm.m × ˙ = P
7 ply1sclrmsm.n N = mulGrp P
8 ply1sclrmsm.e × ˙ = N
9 ply1sclrmsm.a A = algSc P
10 2 ply1sca R Ring R = Scalar P
11 10 fveq2d R Ring Base R = Base Scalar P
12 1 11 syl5eq R Ring K = Base Scalar P
13 12 eleq2d R Ring F K F Base Scalar P
14 13 biimpa R Ring F K F Base Scalar P
15 eqid Scalar P = Scalar P
16 eqid Base Scalar P = Base Scalar P
17 eqid 1 P = 1 P
18 9 15 16 5 17 asclval F Base Scalar P A F = F · ˙ 1 P
19 14 18 syl R Ring F K A F = F · ˙ 1 P
20 19 3adant3 R Ring F K Z E A F = F · ˙ 1 P
21 20 oveq1d R Ring F K Z E A F × ˙ Z = F · ˙ 1 P × ˙ Z
22 simp1 R Ring F K Z E R Ring
23 1 eleq2i F K F Base R
24 23 biimpi F K F Base R
25 24 3ad2ant2 R Ring F K Z E F Base R
26 2 ply1ring R Ring P Ring
27 3 17 ringidcl P Ring 1 P E
28 26 27 syl R Ring 1 P E
29 28 3ad2ant1 R Ring F K Z E 1 P E
30 simp3 R Ring F K Z E Z E
31 eqid Base R = Base R
32 2 6 3 31 5 ply1ass23l R Ring F Base R 1 P E Z E F · ˙ 1 P × ˙ Z = F · ˙ 1 P × ˙ Z
33 22 25 29 30 32 syl13anc R Ring F K Z E F · ˙ 1 P × ˙ Z = F · ˙ 1 P × ˙ Z
34 3 6 17 ringlidm P Ring Z E 1 P × ˙ Z = Z
35 26 34 sylan R Ring Z E 1 P × ˙ Z = Z
36 35 3adant2 R Ring F K Z E 1 P × ˙ Z = Z
37 36 oveq2d R Ring F K Z E F · ˙ 1 P × ˙ Z = F · ˙ Z
38 21 33 37 3eqtrd R Ring F K Z E A F × ˙ Z = F · ˙ Z