Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Basic algebraic structures (extension)
Univariate polynomials (extension)
coe1id
Next ⟩
coe1sclmulval
Metamath Proof Explorer
Ascii
Unicode
Theorem
coe1id
Description:
Coefficient vector of the unit polynomial.
(Contributed by
AV
, 9-Aug-2019)
Ref
Expression
Hypotheses
coe1id.p
⊢
P
=
Poly
1
⁡
R
coe1id.i
⊢
I
=
1
P
coe1id.0
⊢
0
˙
=
0
R
coe1id.1
⊢
1
˙
=
1
R
Assertion
coe1id
⊢
R
∈
Ring
→
coe
1
⁡
I
=
x
∈
ℕ
0
⟼
if
x
=
0
1
˙
0
˙
Proof
Step
Hyp
Ref
Expression
1
coe1id.p
⊢
P
=
Poly
1
⁡
R
2
coe1id.i
⊢
I
=
1
P
3
coe1id.0
⊢
0
˙
=
0
R
4
coe1id.1
⊢
1
˙
=
1
R
5
eqid
⊢
algSc
⁡
P
=
algSc
⁡
P
6
1
5
4
2
ply1scl1
⊢
R
∈
Ring
→
algSc
⁡
P
⁡
1
˙
=
I
7
6
eqcomd
⊢
R
∈
Ring
→
I
=
algSc
⁡
P
⁡
1
˙
8
7
fveq2d
⊢
R
∈
Ring
→
coe
1
⁡
I
=
coe
1
⁡
algSc
⁡
P
⁡
1
˙
9
eqid
⊢
Base
R
=
Base
R
10
9
4
ringidcl
⊢
R
∈
Ring
→
1
˙
∈
Base
R
11
1
5
9
3
coe1scl
⊢
R
∈
Ring
∧
1
˙
∈
Base
R
→
coe
1
⁡
algSc
⁡
P
⁡
1
˙
=
x
∈
ℕ
0
⟼
if
x
=
0
1
˙
0
˙
12
10
11
mpdan
⊢
R
∈
Ring
→
coe
1
⁡
algSc
⁡
P
⁡
1
˙
=
x
∈
ℕ
0
⟼
if
x
=
0
1
˙
0
˙
13
8
12
eqtrd
⊢
R
∈
Ring
→
coe
1
⁡
I
=
x
∈
ℕ
0
⟼
if
x
=
0
1
˙
0
˙