Metamath Proof Explorer


Theorem coe1id

Description: Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019)

Ref Expression
Hypotheses coe1id.p P = Poly 1 R
coe1id.i I = 1 P
coe1id.0 0 ˙ = 0 R
coe1id.1 1 ˙ = 1 R
Assertion coe1id R Ring coe 1 I = x 0 if x = 0 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 coe1id.p P = Poly 1 R
2 coe1id.i I = 1 P
3 coe1id.0 0 ˙ = 0 R
4 coe1id.1 1 ˙ = 1 R
5 eqid algSc P = algSc P
6 1 5 4 2 ply1scl1 R Ring algSc P 1 ˙ = I
7 6 eqcomd R Ring I = algSc P 1 ˙
8 7 fveq2d R Ring coe 1 I = coe 1 algSc P 1 ˙
9 eqid Base R = Base R
10 9 4 ringidcl R Ring 1 ˙ Base R
11 1 5 9 3 coe1scl R Ring 1 ˙ Base R coe 1 algSc P 1 ˙ = x 0 if x = 0 1 ˙ 0 ˙
12 10 11 mpdan R Ring coe 1 algSc P 1 ˙ = x 0 if x = 0 1 ˙ 0 ˙
13 8 12 eqtrd R Ring coe 1 I = x 0 if x = 0 1 ˙ 0 ˙