Metamath Proof Explorer


Theorem coe1sclmulval

Description: The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses coe1sclmulval.p P=Poly1R
coe1sclmulval.b B=BaseP
coe1sclmulval.k K=BaseR
coe1sclmulval.a A=algScP
coe1sclmulval.s S=P
coe1sclmulval.t ˙=P
coe1sclmulval.u ·˙=R
Assertion coe1sclmulval RRingYKZBN0coe1YSZN=Y·˙coe1ZN

Proof

Step Hyp Ref Expression
1 coe1sclmulval.p P=Poly1R
2 coe1sclmulval.b B=BaseP
3 coe1sclmulval.k K=BaseR
4 coe1sclmulval.a A=algScP
5 coe1sclmulval.s S=P
6 coe1sclmulval.t ˙=P
7 coe1sclmulval.u ·˙=R
8 simp1 RRingYKZBN0RRing
9 simp2l RRingYKZBN0YK
10 simp2r RRingYKZBN0ZB
11 eqid var1R=var1R
12 eqid mulGrpP=mulGrpP
13 eqid mulGrpP=mulGrpP
14 eqid algScP=algScP
15 3 1 2 11 5 6 12 13 14 ply1sclrmsm RRingYKZBalgScPY˙Z=YSZ
16 8 9 10 15 syl3anc RRingYKZBN0algScPY˙Z=YSZ
17 16 eqcomd RRingYKZBN0YSZ=algScPY˙Z
18 17 fveq2d RRingYKZBN0coe1YSZ=coe1algScPY˙Z
19 18 fveq1d RRingYKZBN0coe1YSZN=coe1algScPY˙ZN
20 1 2 3 14 6 7 coe1sclmulfv RRingYKZBN0coe1algScPY˙ZN=Y·˙coe1ZN
21 19 20 eqtrd RRingYKZBN0coe1YSZN=Y·˙coe1ZN