Metamath Proof Explorer


Theorem coe1sclmulval

Description: The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses coe1sclmulval.p P = Poly 1 R
coe1sclmulval.b B = Base P
coe1sclmulval.k K = Base R
coe1sclmulval.a A = algSc P
coe1sclmulval.s S = P
coe1sclmulval.t ˙ = P
coe1sclmulval.u · ˙ = R
Assertion coe1sclmulval R Ring Y K Z B N 0 coe 1 Y S Z N = Y · ˙ coe 1 Z N

Proof

Step Hyp Ref Expression
1 coe1sclmulval.p P = Poly 1 R
2 coe1sclmulval.b B = Base P
3 coe1sclmulval.k K = Base R
4 coe1sclmulval.a A = algSc P
5 coe1sclmulval.s S = P
6 coe1sclmulval.t ˙ = P
7 coe1sclmulval.u · ˙ = R
8 simp1 R Ring Y K Z B N 0 R Ring
9 simp2l R Ring Y K Z B N 0 Y K
10 simp2r R Ring Y K Z B N 0 Z B
11 eqid var 1 R = var 1 R
12 eqid mulGrp P = mulGrp P
13 eqid mulGrp P = mulGrp P
14 eqid algSc P = algSc P
15 3 1 2 11 5 6 12 13 14 ply1sclrmsm R Ring Y K Z B algSc P Y ˙ Z = Y S Z
16 8 9 10 15 syl3anc R Ring Y K Z B N 0 algSc P Y ˙ Z = Y S Z
17 16 eqcomd R Ring Y K Z B N 0 Y S Z = algSc P Y ˙ Z
18 17 fveq2d R Ring Y K Z B N 0 coe 1 Y S Z = coe 1 algSc P Y ˙ Z
19 18 fveq1d R Ring Y K Z B N 0 coe 1 Y S Z N = coe 1 algSc P Y ˙ Z N
20 1 2 3 14 6 7 coe1sclmulfv R Ring Y K Z B N 0 coe 1 algSc P Y ˙ Z N = Y · ˙ coe 1 Z N
21 19 20 eqtrd R Ring Y K Z B N 0 coe 1 Y S Z N = Y · ˙ coe 1 Z N