| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1sclmulval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
coe1sclmulval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
coe1sclmulval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
coe1sclmulval.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 5 |
|
coe1sclmulval.s |
⊢ 𝑆 = ( ·𝑠 ‘ 𝑃 ) |
| 6 |
|
coe1sclmulval.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 7 |
|
coe1sclmulval.u |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 9 |
|
simp2l |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ 𝐾 ) |
| 10 |
|
simp2r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 14 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 15 |
3 1 2 11 5 6 12 13 14
|
ply1sclrmsm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) = ( 𝑌 𝑆 𝑍 ) ) |
| 16 |
8 9 10 15
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) = ( 𝑌 𝑆 𝑍 ) ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑌 𝑆 𝑍 ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) = ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) ) ) |
| 19 |
18
|
fveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 ) = ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) ) ‘ 𝑁 ) ) |
| 20 |
1 2 3 14 6 7
|
coe1sclmulfv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) ∙ 𝑍 ) ) ‘ 𝑁 ) = ( 𝑌 · ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) ) ) |
| 21 |
19 20
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 ) = ( 𝑌 · ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) ) ) |