Metamath Proof Explorer


Theorem coe1sclmulval

Description: The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses coe1sclmulval.p 𝑃 = ( Poly1𝑅 )
coe1sclmulval.b 𝐵 = ( Base ‘ 𝑃 )
coe1sclmulval.k 𝐾 = ( Base ‘ 𝑅 )
coe1sclmulval.a 𝐴 = ( algSc ‘ 𝑃 )
coe1sclmulval.s 𝑆 = ( ·𝑠𝑃 )
coe1sclmulval.t = ( .r𝑃 )
coe1sclmulval.u · = ( .r𝑅 )
Assertion coe1sclmulval ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 ) = ( 𝑌 · ( ( coe1𝑍 ) ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 coe1sclmulval.p 𝑃 = ( Poly1𝑅 )
2 coe1sclmulval.b 𝐵 = ( Base ‘ 𝑃 )
3 coe1sclmulval.k 𝐾 = ( Base ‘ 𝑅 )
4 coe1sclmulval.a 𝐴 = ( algSc ‘ 𝑃 )
5 coe1sclmulval.s 𝑆 = ( ·𝑠𝑃 )
6 coe1sclmulval.t = ( .r𝑃 )
7 coe1sclmulval.u · = ( .r𝑅 )
8 simp1 ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑅 ∈ Ring )
9 simp2l ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌𝐾 )
10 simp2r ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑍𝐵 )
11 eqid ( var1𝑅 ) = ( var1𝑅 )
12 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
13 eqid ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
14 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
15 3 1 2 11 5 6 12 13 14 ply1sclrmsm ( ( 𝑅 ∈ Ring ∧ 𝑌𝐾𝑍𝐵 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) = ( 𝑌 𝑆 𝑍 ) )
16 8 9 10 15 syl3anc ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) = ( 𝑌 𝑆 𝑍 ) )
17 16 eqcomd ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑌 𝑆 𝑍 ) = ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) )
18 17 fveq2d ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) = ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) ) )
19 18 fveq1d ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 ) = ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) ) ‘ 𝑁 ) )
20 1 2 3 14 6 7 coe1sclmulfv ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 ) 𝑍 ) ) ‘ 𝑁 ) = ( 𝑌 · ( ( coe1𝑍 ) ‘ 𝑁 ) ) )
21 19 20 eqtrd ( ( 𝑅 ∈ Ring ∧ ( 𝑌𝐾𝑍𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 ) = ( 𝑌 · ( ( coe1𝑍 ) ‘ 𝑁 ) ) )