| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sclmulval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1sclmulval.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | coe1sclmulval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | coe1sclmulval.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | coe1sclmulval.s | ⊢ 𝑆  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 6 |  | coe1sclmulval.t | ⊢  ∙   =  ( .r ‘ 𝑃 ) | 
						
							| 7 |  | coe1sclmulval.u | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | simp2l | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  𝑌  ∈  𝐾 ) | 
						
							| 10 |  | simp2r | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  𝑍  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 13 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 14 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 15 | 3 1 2 11 5 6 12 13 14 | ply1sclrmsm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  →  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 )  =  ( 𝑌 𝑆 𝑍 ) ) | 
						
							| 16 | 8 9 10 15 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 )  =  ( 𝑌 𝑆 𝑍 ) ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑌 𝑆 𝑍 )  =  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) )  =  ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 ) ) ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 )  =  ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 ) ) ‘ 𝑁 ) ) | 
						
							| 20 | 1 2 3 14 6 7 | coe1sclmulfv | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑌 )  ∙  𝑍 ) ) ‘ 𝑁 )  =  ( 𝑌  ·  ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) ) ) | 
						
							| 21 | 19 20 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑌  ∈  𝐾  ∧  𝑍  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑌 𝑆 𝑍 ) ) ‘ 𝑁 )  =  ( 𝑌  ·  ( ( coe1 ‘ 𝑍 ) ‘ 𝑁 ) ) ) |