Metamath Proof Explorer


Theorem coe1sclmulval

Description: The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses coe1sclmulval.p
|- P = ( Poly1 ` R )
coe1sclmulval.b
|- B = ( Base ` P )
coe1sclmulval.k
|- K = ( Base ` R )
coe1sclmulval.a
|- A = ( algSc ` P )
coe1sclmulval.s
|- S = ( .s ` P )
coe1sclmulval.t
|- .xb = ( .r ` P )
coe1sclmulval.u
|- .x. = ( .r ` R )
Assertion coe1sclmulval
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) )

Proof

Step Hyp Ref Expression
1 coe1sclmulval.p
 |-  P = ( Poly1 ` R )
2 coe1sclmulval.b
 |-  B = ( Base ` P )
3 coe1sclmulval.k
 |-  K = ( Base ` R )
4 coe1sclmulval.a
 |-  A = ( algSc ` P )
5 coe1sclmulval.s
 |-  S = ( .s ` P )
6 coe1sclmulval.t
 |-  .xb = ( .r ` P )
7 coe1sclmulval.u
 |-  .x. = ( .r ` R )
8 simp1
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> R e. Ring )
9 simp2l
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Y e. K )
10 simp2r
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Z e. B )
11 eqid
 |-  ( var1 ` R ) = ( var1 ` R )
12 eqid
 |-  ( mulGrp ` P ) = ( mulGrp ` P )
13 eqid
 |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) )
14 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
15 3 1 2 11 5 6 12 13 14 ply1sclrmsm
 |-  ( ( R e. Ring /\ Y e. K /\ Z e. B ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) )
16 8 9 10 15 syl3anc
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) )
17 16 eqcomd
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( Y S Z ) = ( ( ( algSc ` P ) ` Y ) .xb Z ) )
18 17 fveq2d
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( coe1 ` ( Y S Z ) ) = ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) )
19 18 fveq1d
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) )
20 1 2 3 14 6 7 coe1sclmulfv
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) )
21 19 20 eqtrd
 |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) )