| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1sclmulval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | coe1sclmulval.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | coe1sclmulval.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | coe1sclmulval.a |  |-  A = ( algSc ` P ) | 
						
							| 5 |  | coe1sclmulval.s |  |-  S = ( .s ` P ) | 
						
							| 6 |  | coe1sclmulval.t |  |-  .xb = ( .r ` P ) | 
						
							| 7 |  | coe1sclmulval.u |  |-  .x. = ( .r ` R ) | 
						
							| 8 |  | simp1 |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> R e. Ring ) | 
						
							| 9 |  | simp2l |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Y e. K ) | 
						
							| 10 |  | simp2r |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Z e. B ) | 
						
							| 11 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 12 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 13 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 14 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 15 | 3 1 2 11 5 6 12 13 14 | ply1sclrmsm |  |-  ( ( R e. Ring /\ Y e. K /\ Z e. B ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) ) | 
						
							| 16 | 8 9 10 15 | syl3anc |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( Y S Z ) = ( ( ( algSc ` P ) ` Y ) .xb Z ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( coe1 ` ( Y S Z ) ) = ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ) | 
						
							| 19 | 18 | fveq1d |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) ) | 
						
							| 20 | 1 2 3 14 6 7 | coe1sclmulfv |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) ) | 
						
							| 21 | 19 20 | eqtrd |  |-  ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) ) |