Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sclmulval.p |
|- P = ( Poly1 ` R ) |
2 |
|
coe1sclmulval.b |
|- B = ( Base ` P ) |
3 |
|
coe1sclmulval.k |
|- K = ( Base ` R ) |
4 |
|
coe1sclmulval.a |
|- A = ( algSc ` P ) |
5 |
|
coe1sclmulval.s |
|- S = ( .s ` P ) |
6 |
|
coe1sclmulval.t |
|- .xb = ( .r ` P ) |
7 |
|
coe1sclmulval.u |
|- .x. = ( .r ` R ) |
8 |
|
simp1 |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> R e. Ring ) |
9 |
|
simp2l |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Y e. K ) |
10 |
|
simp2r |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> Z e. B ) |
11 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
12 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
13 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
14 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
15 |
3 1 2 11 5 6 12 13 14
|
ply1sclrmsm |
|- ( ( R e. Ring /\ Y e. K /\ Z e. B ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) ) |
16 |
8 9 10 15
|
syl3anc |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( ( algSc ` P ) ` Y ) .xb Z ) = ( Y S Z ) ) |
17 |
16
|
eqcomd |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( Y S Z ) = ( ( ( algSc ` P ) ` Y ) .xb Z ) ) |
18 |
17
|
fveq2d |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( coe1 ` ( Y S Z ) ) = ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ) |
19 |
18
|
fveq1d |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) ) |
20 |
1 2 3 14 6 7
|
coe1sclmulfv |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( ( ( algSc ` P ) ` Y ) .xb Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) ) |
21 |
19 20
|
eqtrd |
|- ( ( R e. Ring /\ ( Y e. K /\ Z e. B ) /\ N e. NN0 ) -> ( ( coe1 ` ( Y S Z ) ) ` N ) = ( Y .x. ( ( coe1 ` Z ) ` N ) ) ) |