| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1sclrmsm.k |
|- K = ( Base ` R ) |
| 2 |
|
ply1sclrmsm.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
ply1sclrmsm.b |
|- E = ( Base ` P ) |
| 4 |
|
ply1sclrmsm.x |
|- X = ( var1 ` R ) |
| 5 |
|
ply1sclrmsm.s |
|- .x. = ( .s ` P ) |
| 6 |
|
ply1sclrmsm.m |
|- .X. = ( .r ` P ) |
| 7 |
|
ply1sclrmsm.n |
|- N = ( mulGrp ` P ) |
| 8 |
|
ply1sclrmsm.e |
|- .^ = ( .g ` N ) |
| 9 |
|
ply1sclrmsm.a |
|- A = ( algSc ` P ) |
| 10 |
2
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 11 |
10
|
fveq2d |
|- ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 12 |
1 11
|
eqtrid |
|- ( R e. Ring -> K = ( Base ` ( Scalar ` P ) ) ) |
| 13 |
12
|
eleq2d |
|- ( R e. Ring -> ( F e. K <-> F e. ( Base ` ( Scalar ` P ) ) ) ) |
| 14 |
13
|
biimpa |
|- ( ( R e. Ring /\ F e. K ) -> F e. ( Base ` ( Scalar ` P ) ) ) |
| 15 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 16 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 17 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 18 |
9 15 16 5 17
|
asclval |
|- ( F e. ( Base ` ( Scalar ` P ) ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) |
| 19 |
14 18
|
syl |
|- ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) |
| 20 |
19
|
3adant3 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( A ` F ) .X. Z ) = ( ( F .x. ( 1r ` P ) ) .X. Z ) ) |
| 22 |
|
simp1 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> R e. Ring ) |
| 23 |
1
|
eleq2i |
|- ( F e. K <-> F e. ( Base ` R ) ) |
| 24 |
23
|
biimpi |
|- ( F e. K -> F e. ( Base ` R ) ) |
| 25 |
24
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> F e. ( Base ` R ) ) |
| 26 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 27 |
3 17
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. E ) |
| 28 |
26 27
|
syl |
|- ( R e. Ring -> ( 1r ` P ) e. E ) |
| 29 |
28
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( 1r ` P ) e. E ) |
| 30 |
|
simp3 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> Z e. E ) |
| 31 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 32 |
2 6 3 31 5
|
ply1ass23l |
|- ( ( R e. Ring /\ ( F e. ( Base ` R ) /\ ( 1r ` P ) e. E /\ Z e. E ) ) -> ( ( F .x. ( 1r ` P ) ) .X. Z ) = ( F .x. ( ( 1r ` P ) .X. Z ) ) ) |
| 33 |
22 25 29 30 32
|
syl13anc |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( F .x. ( 1r ` P ) ) .X. Z ) = ( F .x. ( ( 1r ` P ) .X. Z ) ) ) |
| 34 |
3 6 17
|
ringlidm |
|- ( ( P e. Ring /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) |
| 35 |
26 34
|
sylan |
|- ( ( R e. Ring /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) |
| 36 |
35
|
3adant2 |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) |
| 37 |
36
|
oveq2d |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( F .x. ( ( 1r ` P ) .X. Z ) ) = ( F .x. Z ) ) |
| 38 |
21 33 37
|
3eqtrd |
|- ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( A ` F ) .X. Z ) = ( F .x. Z ) ) |