| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1sclrmsm.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | ply1sclrmsm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | ply1sclrmsm.b |  |-  E = ( Base ` P ) | 
						
							| 4 |  | ply1sclrmsm.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | ply1sclrmsm.s |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | ply1sclrmsm.m |  |-  .X. = ( .r ` P ) | 
						
							| 7 |  | ply1sclrmsm.n |  |-  N = ( mulGrp ` P ) | 
						
							| 8 |  | ply1sclrmsm.e |  |-  .^ = ( .g ` N ) | 
						
							| 9 |  | ply1sclrmsm.a |  |-  A = ( algSc ` P ) | 
						
							| 10 | 2 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 12 | 1 11 | eqtrid |  |-  ( R e. Ring -> K = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 13 | 12 | eleq2d |  |-  ( R e. Ring -> ( F e. K <-> F e. ( Base ` ( Scalar ` P ) ) ) ) | 
						
							| 14 | 13 | biimpa |  |-  ( ( R e. Ring /\ F e. K ) -> F e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 18 | 9 15 16 5 17 | asclval |  |-  ( F e. ( Base ` ( Scalar ` P ) ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) | 
						
							| 19 | 14 18 | syl |  |-  ( ( R e. Ring /\ F e. K ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) | 
						
							| 20 | 19 | 3adant3 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( A ` F ) = ( F .x. ( 1r ` P ) ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( A ` F ) .X. Z ) = ( ( F .x. ( 1r ` P ) ) .X. Z ) ) | 
						
							| 22 |  | simp1 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> R e. Ring ) | 
						
							| 23 | 1 | eleq2i |  |-  ( F e. K <-> F e. ( Base ` R ) ) | 
						
							| 24 | 23 | biimpi |  |-  ( F e. K -> F e. ( Base ` R ) ) | 
						
							| 25 | 24 | 3ad2ant2 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> F e. ( Base ` R ) ) | 
						
							| 26 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 27 | 3 17 | ringidcl |  |-  ( P e. Ring -> ( 1r ` P ) e. E ) | 
						
							| 28 | 26 27 | syl |  |-  ( R e. Ring -> ( 1r ` P ) e. E ) | 
						
							| 29 | 28 | 3ad2ant1 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( 1r ` P ) e. E ) | 
						
							| 30 |  | simp3 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> Z e. E ) | 
						
							| 31 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 32 | 2 6 3 31 5 | ply1ass23l |  |-  ( ( R e. Ring /\ ( F e. ( Base ` R ) /\ ( 1r ` P ) e. E /\ Z e. E ) ) -> ( ( F .x. ( 1r ` P ) ) .X. Z ) = ( F .x. ( ( 1r ` P ) .X. Z ) ) ) | 
						
							| 33 | 22 25 29 30 32 | syl13anc |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( F .x. ( 1r ` P ) ) .X. Z ) = ( F .x. ( ( 1r ` P ) .X. Z ) ) ) | 
						
							| 34 | 3 6 17 | ringlidm |  |-  ( ( P e. Ring /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) | 
						
							| 35 | 26 34 | sylan |  |-  ( ( R e. Ring /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) | 
						
							| 36 | 35 | 3adant2 |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( 1r ` P ) .X. Z ) = Z ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( F .x. ( ( 1r ` P ) .X. Z ) ) = ( F .x. Z ) ) | 
						
							| 38 | 21 33 37 | 3eqtrd |  |-  ( ( R e. Ring /\ F e. K /\ Z e. E ) -> ( ( A ` F ) .X. Z ) = ( F .x. Z ) ) |