| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1id.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | coe1id.i |  |-  I = ( 1r ` P ) | 
						
							| 3 |  | coe1id.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | coe1id.1 |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 6 | 1 5 4 2 | ply1scl1 |  |-  ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I ) | 
						
							| 7 | 6 | eqcomd |  |-  ( R e. Ring -> I = ( ( algSc ` P ) ` .1. ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( R e. Ring -> ( coe1 ` I ) = ( coe1 ` ( ( algSc ` P ) ` .1. ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 9 4 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 11 | 1 5 9 3 | coe1scl |  |-  ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) | 
						
							| 12 | 10 11 | mpdan |  |-  ( R e. Ring -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |