Step |
Hyp |
Ref |
Expression |
1 |
|
coe1id.p |
|- P = ( Poly1 ` R ) |
2 |
|
coe1id.i |
|- I = ( 1r ` P ) |
3 |
|
coe1id.0 |
|- .0. = ( 0g ` R ) |
4 |
|
coe1id.1 |
|- .1. = ( 1r ` R ) |
5 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
6 |
1 5 4 2
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I ) |
7 |
6
|
eqcomd |
|- ( R e. Ring -> I = ( ( algSc ` P ) ` .1. ) ) |
8 |
7
|
fveq2d |
|- ( R e. Ring -> ( coe1 ` I ) = ( coe1 ` ( ( algSc ` P ) ` .1. ) ) ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
9 4
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
11 |
1 5 9 3
|
coe1scl |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
12 |
10 11
|
mpdan |
|- ( R e. Ring -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
13 |
8 12
|
eqtrd |
|- ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |