Metamath Proof Explorer


Theorem coe1id

Description: Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019)

Ref Expression
Hypotheses coe1id.p
|- P = ( Poly1 ` R )
coe1id.i
|- I = ( 1r ` P )
coe1id.0
|- .0. = ( 0g ` R )
coe1id.1
|- .1. = ( 1r ` R )
Assertion coe1id
|- ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) )

Proof

Step Hyp Ref Expression
1 coe1id.p
 |-  P = ( Poly1 ` R )
2 coe1id.i
 |-  I = ( 1r ` P )
3 coe1id.0
 |-  .0. = ( 0g ` R )
4 coe1id.1
 |-  .1. = ( 1r ` R )
5 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
6 1 5 4 2 ply1scl1
 |-  ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I )
7 6 eqcomd
 |-  ( R e. Ring -> I = ( ( algSc ` P ) ` .1. ) )
8 7 fveq2d
 |-  ( R e. Ring -> ( coe1 ` I ) = ( coe1 ` ( ( algSc ` P ) ` .1. ) ) )
9 eqid
 |-  ( Base ` R ) = ( Base ` R )
10 9 4 ringidcl
 |-  ( R e. Ring -> .1. e. ( Base ` R ) )
11 1 5 9 3 coe1scl
 |-  ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) )
12 10 11 mpdan
 |-  ( R e. Ring -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) )
13 8 12 eqtrd
 |-  ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) )