| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1id.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
coe1id.i |
|- I = ( 1r ` P ) |
| 3 |
|
coe1id.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
coe1id.1 |
|- .1. = ( 1r ` R ) |
| 5 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 6 |
1 5 4 2
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I ) |
| 7 |
6
|
eqcomd |
|- ( R e. Ring -> I = ( ( algSc ` P ) ` .1. ) ) |
| 8 |
7
|
fveq2d |
|- ( R e. Ring -> ( coe1 ` I ) = ( coe1 ` ( ( algSc ` P ) ` .1. ) ) ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
9 4
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 11 |
1 5 9 3
|
coe1scl |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
| 12 |
10 11
|
mpdan |
|- ( R e. Ring -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
| 13 |
8 12
|
eqtrd |
|- ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |