| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coe1id.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | coe1id.i | ⊢ 𝐼  =  ( 1r ‘ 𝑃 ) | 
						
							| 3 |  | coe1id.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | coe1id.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 6 | 1 5 4 2 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘  1  )  =  𝐼 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  𝐼  =  ( ( algSc ‘ 𝑃 ) ‘  1  ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑅  ∈  Ring  →  ( coe1 ‘ 𝐼 )  =  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘  1  ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 9 4 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 11 | 1 5 9 3 | coe1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘  1  ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,   1  ,   0  ) ) ) | 
						
							| 12 | 10 11 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘  1  ) )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,   1  ,   0  ) ) ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( 𝑅  ∈  Ring  →  ( coe1 ‘ 𝐼 )  =  ( 𝑥  ∈  ℕ0  ↦  if ( 𝑥  =  0 ,   1  ,   0  ) ) ) |