Step |
Hyp |
Ref |
Expression |
1 |
|
coe1id.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
coe1id.i |
⊢ 𝐼 = ( 1r ‘ 𝑃 ) |
3 |
|
coe1id.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
coe1id.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
6 |
1 5 4 2
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 1 ) = 𝐼 ) |
7 |
6
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → 𝐼 = ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝐼 ) = ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
11 |
1 5 9 3
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |
12 |
10 11
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |
13 |
8 12
|
eqtrd |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 𝐼 ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , 1 , 0 ) ) ) |