Step |
Hyp |
Ref |
Expression |
1 |
|
coe1sclmul.p |
|- P = ( Poly1 ` R ) |
2 |
|
coe1sclmul.b |
|- B = ( Base ` P ) |
3 |
|
coe1sclmul.k |
|- K = ( Base ` R ) |
4 |
|
coe1sclmul.a |
|- A = ( algSc ` P ) |
5 |
|
coe1sclmul.t |
|- .xb = ( .r ` P ) |
6 |
|
coe1sclmul.u |
|- .x. = ( .r ` R ) |
7 |
1 2 3 4 5 6
|
coe1sclmul |
|- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
8 |
7
|
3expb |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
9 |
8
|
3adant3 |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` ( ( A ` X ) .xb Y ) ) = ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ) |
10 |
9
|
fveq1d |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) ) |
11 |
|
simp3 |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> .0. e. NN0 ) |
12 |
|
nn0ex |
|- NN0 e. _V |
13 |
12
|
a1i |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> NN0 e. _V ) |
14 |
|
simp2l |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> X e. K ) |
15 |
|
simp2r |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> Y e. B ) |
16 |
|
eqid |
|- ( coe1 ` Y ) = ( coe1 ` Y ) |
17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
18 |
16 2 1 17
|
coe1f |
|- ( Y e. B -> ( coe1 ` Y ) : NN0 --> ( Base ` R ) ) |
19 |
|
ffn |
|- ( ( coe1 ` Y ) : NN0 --> ( Base ` R ) -> ( coe1 ` Y ) Fn NN0 ) |
20 |
15 18 19
|
3syl |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( coe1 ` Y ) Fn NN0 ) |
21 |
|
eqidd |
|- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( coe1 ` Y ) ` .0. ) = ( ( coe1 ` Y ) ` .0. ) ) |
22 |
13 14 20 21
|
ofc1 |
|- ( ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |
23 |
11 22
|
mpdan |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( ( NN0 X. { X } ) oF .x. ( coe1 ` Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |
24 |
10 23
|
eqtrd |
|- ( ( R e. Ring /\ ( X e. K /\ Y e. B ) /\ .0. e. NN0 ) -> ( ( coe1 ` ( ( A ` X ) .xb Y ) ) ` .0. ) = ( X .x. ( ( coe1 ` Y ) ` .0. ) ) ) |