Metamath Proof Explorer


Theorem ply1mulgsumlem1

Description: Lemma 1 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p 𝑃 = ( Poly1𝑅 )
ply1mulgsum.b 𝐵 = ( Base ‘ 𝑃 )
ply1mulgsum.a 𝐴 = ( coe1𝐾 )
ply1mulgsum.c 𝐶 = ( coe1𝐿 )
ply1mulgsum.x 𝑋 = ( var1𝑅 )
ply1mulgsum.pm × = ( .r𝑃 )
ply1mulgsum.sm · = ( ·𝑠𝑃 )
ply1mulgsum.rm = ( .r𝑅 )
ply1mulgsum.m 𝑀 = ( mulGrp ‘ 𝑃 )
ply1mulgsum.e = ( .g𝑀 )
Assertion ply1mulgsumlem1 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p 𝑃 = ( Poly1𝑅 )
2 ply1mulgsum.b 𝐵 = ( Base ‘ 𝑃 )
3 ply1mulgsum.a 𝐴 = ( coe1𝐾 )
4 ply1mulgsum.c 𝐶 = ( coe1𝐿 )
5 ply1mulgsum.x 𝑋 = ( var1𝑅 )
6 ply1mulgsum.pm × = ( .r𝑃 )
7 ply1mulgsum.sm · = ( ·𝑠𝑃 )
8 ply1mulgsum.rm = ( .r𝑅 )
9 ply1mulgsum.m 𝑀 = ( mulGrp ‘ 𝑃 )
10 ply1mulgsum.e = ( .g𝑀 )
11 eqid ( 0g𝑅 ) = ( 0g𝑅 )
12 3 2 1 11 coe1ae0 ( 𝐾𝐵 → ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) )
13 12 3ad2ant2 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) )
14 4 2 1 11 coe1ae0 ( 𝐿𝐵 → ∃ 𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) )
15 14 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) )
16 nn0addcl ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑎 + 𝑏 ) ∈ ℕ0 )
17 16 adantr ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) → ( 𝑎 + 𝑏 ) ∈ ℕ0 )
18 17 adantr ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) → ( 𝑎 + 𝑏 ) ∈ ℕ0 )
19 breq1 ( 𝑠 = ( 𝑎 + 𝑏 ) → ( 𝑠 < 𝑛 ↔ ( 𝑎 + 𝑏 ) < 𝑛 ) )
20 19 imbi1d ( 𝑠 = ( 𝑎 + 𝑏 ) → ( ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ↔ ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
21 20 ralbidv ( 𝑠 = ( 𝑎 + 𝑏 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
22 21 adantl ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) ∧ 𝑠 = ( 𝑎 + 𝑏 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
23 r19.26 ( ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ↔ ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) )
24 nn0cn ( 𝑎 ∈ ℕ0𝑎 ∈ ℂ )
25 24 adantl ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0 ) → 𝑎 ∈ ℂ )
26 nn0cn ( 𝑏 ∈ ℕ0𝑏 ∈ ℂ )
27 26 adantr ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0 ) → 𝑏 ∈ ℂ )
28 25 27 addcomd ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0 ) → ( 𝑎 + 𝑏 ) = ( 𝑏 + 𝑎 ) )
29 28 3adant3 ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( 𝑎 + 𝑏 ) = ( 𝑏 + 𝑎 ) )
30 29 breq1d ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛 ↔ ( 𝑏 + 𝑎 ) < 𝑛 ) )
31 nn0sumltlt ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( ( 𝑏 + 𝑎 ) < 𝑛𝑎 < 𝑛 ) )
32 30 31 sylbid ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛𝑎 < 𝑛 ) )
33 32 3expia ( ( 𝑏 ∈ ℕ0𝑎 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 + 𝑏 ) < 𝑛𝑎 < 𝑛 ) ) )
34 33 ancoms ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 + 𝑏 ) < 𝑛𝑎 < 𝑛 ) ) )
35 34 adantr ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 + 𝑏 ) < 𝑛𝑎 < 𝑛 ) ) )
36 35 imp ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛𝑎 < 𝑛 ) )
37 36 imim1d ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )
38 37 com23 ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )
39 38 imp ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 + 𝑏 ) < 𝑛 ) → ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) )
40 nn0sumltlt ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛𝑏 < 𝑛 ) )
41 40 3expia ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 + 𝑏 ) < 𝑛𝑏 < 𝑛 ) ) )
42 41 adantr ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 + 𝑏 ) < 𝑛𝑏 < 𝑛 ) ) )
43 42 imp ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛𝑏 < 𝑛 ) )
44 43 imim1d ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) )
45 44 com23 ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) )
46 45 imp ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 + 𝑏 ) < 𝑛 ) → ( ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) )
47 39 46 anim12d ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 + 𝑏 ) < 𝑛 ) → ( ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝐶𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) )
48 47 imp ( ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 + 𝑏 ) < 𝑛 ) ∧ ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) → ( ( 𝐶𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐴𝑛 ) = ( 0g𝑅 ) ) )
49 48 ancomd ( ( ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 + 𝑏 ) < 𝑛 ) ∧ ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) )
50 49 exp31 ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
51 50 com23 ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
52 51 ralimdva ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
53 23 52 syl5bir ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) → ( ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
54 53 imp ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( ( 𝑎 + 𝑏 ) < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )
55 18 22 54 rspcedvd ( ( ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ) ∧ ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )
56 55 exp31 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
57 56 com23 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
58 57 expd ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) ) )
59 58 com34 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) ) )
60 59 impancom ( ( 𝑎 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) → ( 𝑏 ∈ ℕ0 → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) ) )
61 60 com14 ( ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( 𝑏 ∈ ℕ0 → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ( 𝑎 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) ) )
62 61 impcom ( ( 𝑏 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ( 𝑎 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
63 62 rexlimiva ( ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ( 𝑎 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
64 63 com13 ( ( 𝑎 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
65 64 rexlimiva ( ∃ 𝑎 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑎 < 𝑛 → ( 𝐶𝑛 ) = ( 0g𝑅 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) ) )
66 15 65 mpcom ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∃ 𝑏 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑏 < 𝑛 → ( 𝐴𝑛 ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) ) )
67 13 66 mpd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝐴𝑛 ) = ( 0g𝑅 ) ∧ ( 𝐶𝑛 ) = ( 0g𝑅 ) ) ) )