Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ ) |
2 |
|
nn0re |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ ) |
3 |
|
nn0re |
⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ ) |
4 |
|
ltaddsub2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑎 + 𝑏 ) < 𝑐 ↔ 𝑏 < ( 𝑐 − 𝑎 ) ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐 ↔ 𝑏 < ( 𝑐 − 𝑎 ) ) ) |
6 |
|
nn0ge0 |
⊢ ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 0 ≤ 𝑎 ) |
8 |
1 3
|
anim12ci |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ) |
10 |
|
subge02 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ↔ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) ) |
11 |
10
|
bicomd |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( ( 𝑐 − 𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑐 − 𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ≤ 𝑐 ) |
14 |
2
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 𝑏 ∈ ℝ ) |
15 |
|
nn0resubcl |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
18 |
3
|
3ad2ant3 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 𝑐 ∈ ℝ ) |
19 |
|
ltletr |
⊢ ( ( 𝑏 ∈ ℝ ∧ ( 𝑐 − 𝑎 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑏 < ( 𝑐 − 𝑎 ) ∧ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) ) |
20 |
14 17 18 19
|
syl3anc |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑏 < ( 𝑐 − 𝑎 ) ∧ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) ) |
21 |
13 20
|
mpan2d |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑏 < ( 𝑐 − 𝑎 ) → 𝑏 < 𝑐 ) ) |
22 |
5 21
|
sylbid |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐 → 𝑏 < 𝑐 ) ) |