| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℝ ) |
| 2 |
|
nn0re |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ ) |
| 3 |
|
nn0re |
⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ ) |
| 4 |
|
ltaddsub2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑎 + 𝑏 ) < 𝑐 ↔ 𝑏 < ( 𝑐 − 𝑎 ) ) ) |
| 5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐 ↔ 𝑏 < ( 𝑐 − 𝑎 ) ) ) |
| 6 |
|
nn0ge0 |
⊢ ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 0 ≤ 𝑎 ) |
| 8 |
1 3
|
anim12ci |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ) |
| 9 |
8
|
3adant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) ) |
| 10 |
|
subge02 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ↔ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) ) |
| 11 |
10
|
bicomd |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( ( 𝑐 − 𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑐 − 𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) ) |
| 13 |
7 12
|
mpbird |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ≤ 𝑐 ) |
| 14 |
2
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 𝑏 ∈ ℝ ) |
| 15 |
|
nn0resubcl |
⊢ ( ( 𝑐 ∈ ℕ0 ∧ 𝑎 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
| 16 |
15
|
ancoms |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 − 𝑎 ) ∈ ℝ ) |
| 18 |
3
|
3ad2ant3 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → 𝑐 ∈ ℝ ) |
| 19 |
|
ltletr |
⊢ ( ( 𝑏 ∈ ℝ ∧ ( 𝑐 − 𝑎 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑏 < ( 𝑐 − 𝑎 ) ∧ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) ) |
| 20 |
14 17 18 19
|
syl3anc |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑏 < ( 𝑐 − 𝑎 ) ∧ ( 𝑐 − 𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) ) |
| 21 |
13 20
|
mpan2d |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( 𝑏 < ( 𝑐 − 𝑎 ) → 𝑏 < 𝑐 ) ) |
| 22 |
5 21
|
sylbid |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐 → 𝑏 < 𝑐 ) ) |