Metamath Proof Explorer


Theorem nn0sumltlt

Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019)

Ref Expression
Assertion nn0sumltlt ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐𝑏 < 𝑐 ) )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝑎 ∈ ℕ0𝑎 ∈ ℝ )
2 nn0re ( 𝑏 ∈ ℕ0𝑏 ∈ ℝ )
3 nn0re ( 𝑐 ∈ ℕ0𝑐 ∈ ℝ )
4 ltaddsub2 ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑎 + 𝑏 ) < 𝑐𝑏 < ( 𝑐𝑎 ) ) )
5 1 2 3 4 syl3an ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐𝑏 < ( 𝑐𝑎 ) ) )
6 nn0ge0 ( 𝑎 ∈ ℕ0 → 0 ≤ 𝑎 )
7 6 3ad2ant1 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → 0 ≤ 𝑎 )
8 1 3 anim12ci ( ( 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) )
9 8 3adant2 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) )
10 subge02 ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎 ↔ ( 𝑐𝑎 ) ≤ 𝑐 ) )
11 10 bicomd ( ( 𝑐 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( ( 𝑐𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) )
12 9 11 syl ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( ( 𝑐𝑎 ) ≤ 𝑐 ↔ 0 ≤ 𝑎 ) )
13 7 12 mpbird ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑐𝑎 ) ≤ 𝑐 )
14 2 3ad2ant2 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → 𝑏 ∈ ℝ )
15 nn0resubcl ( ( 𝑐 ∈ ℕ0𝑎 ∈ ℕ0 ) → ( 𝑐𝑎 ) ∈ ℝ )
16 15 ancoms ( ( 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑐𝑎 ) ∈ ℝ )
17 16 3adant2 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑐𝑎 ) ∈ ℝ )
18 3 3ad2ant3 ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → 𝑐 ∈ ℝ )
19 ltletr ( ( 𝑏 ∈ ℝ ∧ ( 𝑐𝑎 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑏 < ( 𝑐𝑎 ) ∧ ( 𝑐𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) )
20 14 17 18 19 syl3anc ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( ( 𝑏 < ( 𝑐𝑎 ) ∧ ( 𝑐𝑎 ) ≤ 𝑐 ) → 𝑏 < 𝑐 ) )
21 13 20 mpan2d ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( 𝑏 < ( 𝑐𝑎 ) → 𝑏 < 𝑐 ) )
22 5 21 sylbid ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ) → ( ( 𝑎 + 𝑏 ) < 𝑐𝑏 < 𝑐 ) )