Metamath Proof Explorer


Theorem nn0sumltlt

Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019)

Ref Expression
Assertion nn0sumltlt
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( a + b ) < c -> b < c ) )

Proof

Step Hyp Ref Expression
1 nn0re
 |-  ( a e. NN0 -> a e. RR )
2 nn0re
 |-  ( b e. NN0 -> b e. RR )
3 nn0re
 |-  ( c e. NN0 -> c e. RR )
4 ltaddsub2
 |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> ( ( a + b ) < c <-> b < ( c - a ) ) )
5 1 2 3 4 syl3an
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( a + b ) < c <-> b < ( c - a ) ) )
6 nn0ge0
 |-  ( a e. NN0 -> 0 <_ a )
7 6 3ad2ant1
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> 0 <_ a )
8 1 3 anim12ci
 |-  ( ( a e. NN0 /\ c e. NN0 ) -> ( c e. RR /\ a e. RR ) )
9 8 3adant2
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c e. RR /\ a e. RR ) )
10 subge02
 |-  ( ( c e. RR /\ a e. RR ) -> ( 0 <_ a <-> ( c - a ) <_ c ) )
11 10 bicomd
 |-  ( ( c e. RR /\ a e. RR ) -> ( ( c - a ) <_ c <-> 0 <_ a ) )
12 9 11 syl
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( c - a ) <_ c <-> 0 <_ a ) )
13 7 12 mpbird
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c - a ) <_ c )
14 2 3ad2ant2
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> b e. RR )
15 nn0resubcl
 |-  ( ( c e. NN0 /\ a e. NN0 ) -> ( c - a ) e. RR )
16 15 ancoms
 |-  ( ( a e. NN0 /\ c e. NN0 ) -> ( c - a ) e. RR )
17 16 3adant2
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c - a ) e. RR )
18 3 3ad2ant3
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> c e. RR )
19 ltletr
 |-  ( ( b e. RR /\ ( c - a ) e. RR /\ c e. RR ) -> ( ( b < ( c - a ) /\ ( c - a ) <_ c ) -> b < c ) )
20 14 17 18 19 syl3anc
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( b < ( c - a ) /\ ( c - a ) <_ c ) -> b < c ) )
21 13 20 mpan2d
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( b < ( c - a ) -> b < c ) )
22 5 21 sylbid
 |-  ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( a + b ) < c -> b < c ) )