Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
|- ( a e. NN0 -> a e. RR ) |
2 |
|
nn0re |
|- ( b e. NN0 -> b e. RR ) |
3 |
|
nn0re |
|- ( c e. NN0 -> c e. RR ) |
4 |
|
ltaddsub2 |
|- ( ( a e. RR /\ b e. RR /\ c e. RR ) -> ( ( a + b ) < c <-> b < ( c - a ) ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( a + b ) < c <-> b < ( c - a ) ) ) |
6 |
|
nn0ge0 |
|- ( a e. NN0 -> 0 <_ a ) |
7 |
6
|
3ad2ant1 |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> 0 <_ a ) |
8 |
1 3
|
anim12ci |
|- ( ( a e. NN0 /\ c e. NN0 ) -> ( c e. RR /\ a e. RR ) ) |
9 |
8
|
3adant2 |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c e. RR /\ a e. RR ) ) |
10 |
|
subge02 |
|- ( ( c e. RR /\ a e. RR ) -> ( 0 <_ a <-> ( c - a ) <_ c ) ) |
11 |
10
|
bicomd |
|- ( ( c e. RR /\ a e. RR ) -> ( ( c - a ) <_ c <-> 0 <_ a ) ) |
12 |
9 11
|
syl |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( c - a ) <_ c <-> 0 <_ a ) ) |
13 |
7 12
|
mpbird |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c - a ) <_ c ) |
14 |
2
|
3ad2ant2 |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> b e. RR ) |
15 |
|
nn0resubcl |
|- ( ( c e. NN0 /\ a e. NN0 ) -> ( c - a ) e. RR ) |
16 |
15
|
ancoms |
|- ( ( a e. NN0 /\ c e. NN0 ) -> ( c - a ) e. RR ) |
17 |
16
|
3adant2 |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( c - a ) e. RR ) |
18 |
3
|
3ad2ant3 |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> c e. RR ) |
19 |
|
ltletr |
|- ( ( b e. RR /\ ( c - a ) e. RR /\ c e. RR ) -> ( ( b < ( c - a ) /\ ( c - a ) <_ c ) -> b < c ) ) |
20 |
14 17 18 19
|
syl3anc |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( b < ( c - a ) /\ ( c - a ) <_ c ) -> b < c ) ) |
21 |
13 20
|
mpan2d |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( b < ( c - a ) -> b < c ) ) |
22 |
5 21
|
sylbid |
|- ( ( a e. NN0 /\ b e. NN0 /\ c e. NN0 ) -> ( ( a + b ) < c -> b < c ) ) |