Metamath Proof Explorer


Theorem nn0sumltlt

Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019)

Ref Expression
Assertion nn0sumltlt a 0 b 0 c 0 a + b < c b < c

Proof

Step Hyp Ref Expression
1 nn0re a 0 a
2 nn0re b 0 b
3 nn0re c 0 c
4 ltaddsub2 a b c a + b < c b < c a
5 1 2 3 4 syl3an a 0 b 0 c 0 a + b < c b < c a
6 nn0ge0 a 0 0 a
7 6 3ad2ant1 a 0 b 0 c 0 0 a
8 1 3 anim12ci a 0 c 0 c a
9 8 3adant2 a 0 b 0 c 0 c a
10 subge02 c a 0 a c a c
11 10 bicomd c a c a c 0 a
12 9 11 syl a 0 b 0 c 0 c a c 0 a
13 7 12 mpbird a 0 b 0 c 0 c a c
14 2 3ad2ant2 a 0 b 0 c 0 b
15 nn0resubcl c 0 a 0 c a
16 15 ancoms a 0 c 0 c a
17 16 3adant2 a 0 b 0 c 0 c a
18 3 3ad2ant3 a 0 b 0 c 0 c
19 ltletr b c a c b < c a c a c b < c
20 14 17 18 19 syl3anc a 0 b 0 c 0 b < c a c a c b < c
21 13 20 mpan2d a 0 b 0 c 0 b < c a b < c
22 5 21 sylbid a 0 b 0 c 0 a + b < c b < c