Metamath Proof Explorer


Theorem ltaddsub2

Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltaddsub2 ABCA+B<CB<CA

Proof

Step Hyp Ref Expression
1 recn AA
2 recn BB
3 addcom ABA+B=B+A
4 1 2 3 syl2an ABA+B=B+A
5 4 3adant3 ABCA+B=B+A
6 5 breq1d ABCA+B<CB+A<C
7 ltaddsub BACB+A<CB<CA
8 7 3com12 ABCB+A<CB<CA
9 6 8 bitrd ABCA+B<CB<CA