Metamath Proof Explorer


Theorem ltaddsub

Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltaddsub A B C A + B < C A < C B

Proof

Step Hyp Ref Expression
1 lesubadd C B A C B A C A + B
2 1 3com13 A B C C B A C A + B
3 resubcl C B C B
4 lenlt C B A C B A ¬ A < C B
5 3 4 stoic3 C B A C B A ¬ A < C B
6 5 3com13 A B C C B A ¬ A < C B
7 readdcl A B A + B
8 lenlt C A + B C A + B ¬ A + B < C
9 7 8 sylan2 C A B C A + B ¬ A + B < C
10 9 3impb C A B C A + B ¬ A + B < C
11 10 3coml A B C C A + B ¬ A + B < C
12 2 6 11 3bitr3rd A B C ¬ A + B < C ¬ A < C B
13 12 con4bid A B C A + B < C A < C B