Step |
Hyp |
Ref |
Expression |
1 |
|
lesubadd |
|- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> C <_ ( A + B ) ) ) |
2 |
1
|
3com13 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) <_ A <-> C <_ ( A + B ) ) ) |
3 |
|
resubcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
4 |
|
lenlt |
|- ( ( ( C - B ) e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
5 |
3 4
|
stoic3 |
|- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
6 |
5
|
3com13 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
7 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
8 |
|
lenlt |
|- ( ( C e. RR /\ ( A + B ) e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
9 |
7 8
|
sylan2 |
|- ( ( C e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
10 |
9
|
3impb |
|- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
11 |
10
|
3coml |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
12 |
2 6 11
|
3bitr3rd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( A + B ) < C <-> -. A < ( C - B ) ) ) |
13 |
12
|
con4bid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |