Metamath Proof Explorer


Theorem nn0resubcl

Description: Closure law for subtraction of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018)

Ref Expression
Assertion nn0resubcl ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
2 nn0re ( 𝐵 ∈ ℕ0𝐵 ∈ ℝ )
3 resubcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ) ∈ ℝ )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ) → ( 𝐴𝐵 ) ∈ ℝ )