Metamath Proof Explorer
Description: Closure law for subtraction of reals, restricted to nonnegative integers.
(Contributed by Alexander van der Vekens, 6-Apr-2018)
|
|
Ref |
Expression |
|
Assertion |
nn0resubcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
2 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
3 |
|
resubcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) |