Metamath Proof Explorer

Table of Contents - Fermat pseudoprimes

"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl].

For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime",, 29-May-2023.

  1. cfppr
  2. df-fppr
  3. fppr
  4. fpprmod
  5. fpprel
  6. fpprbasnn
  7. fpprnn
  8. fppr2odd
  9. 11t31e341
  10. 2exp340mod341
  11. 341fppr2
  12. 4fppr1
  13. 8exp8mod9
  14. 9fppr8
  15. dfwppr
  16. fpprwppr
  17. fpprwpprb
  18. fpprel2
  19. nfermltl8rev
  20. nfermltl2rev
  21. nfermltlrev