| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfeven4 | ⊢  Even   =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) } | 
						
							| 2 |  | eqcom | ⊢ ( 𝑧  =  ( 2  ·  𝑖 )  ↔  ( 2  ·  𝑖 )  =  𝑧 ) | 
						
							| 3 |  | 2cnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 4 |  | zcn | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℂ ) | 
						
							| 6 | 3 5 | mulcomd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 2  ·  𝑖 )  =  ( 𝑖  ·  2 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( ( 2  ·  𝑖 )  =  𝑧  ↔  ( 𝑖  ·  2 )  =  𝑧 ) ) | 
						
							| 8 | 2 7 | bitrid | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑧  =  ( 2  ·  𝑖 )  ↔  ( 𝑖  ·  2 )  =  𝑧 ) ) | 
						
							| 9 | 8 | rexbidva | ⊢ ( 𝑧  ∈  ℤ  →  ( ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 )  ↔  ∃ 𝑖  ∈  ℤ ( 𝑖  ·  2 )  =  𝑧 ) ) | 
						
							| 10 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 11 |  | divides | ⊢ ( ( 2  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 2  ∥  𝑧  ↔  ∃ 𝑖  ∈  ℤ ( 𝑖  ·  2 )  =  𝑧 ) ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝑧  ∈  ℤ  →  ( 2  ∥  𝑧  ↔  ∃ 𝑖  ∈  ℤ ( 𝑖  ·  2 )  =  𝑧 ) ) | 
						
							| 13 | 9 12 | bitr4d | ⊢ ( 𝑧  ∈  ℤ  →  ( ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 )  ↔  2  ∥  𝑧 ) ) | 
						
							| 14 | 13 | rabbiia | ⊢ { 𝑧  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) }  =  { 𝑧  ∈  ℤ  ∣  2  ∥  𝑧 } | 
						
							| 15 | 1 14 | eqtri | ⊢  Even   =  { 𝑧  ∈  ℤ  ∣  2  ∥  𝑧 } |