| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfeven4 |  |-  Even = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } | 
						
							| 2 |  | eqcom |  |-  ( z = ( 2 x. i ) <-> ( 2 x. i ) = z ) | 
						
							| 3 |  | 2cnd |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) | 
						
							| 4 |  | zcn |  |-  ( i e. ZZ -> i e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) | 
						
							| 6 | 3 5 | mulcomd |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) = ( i x. 2 ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) = z <-> ( i x. 2 ) = z ) ) | 
						
							| 8 | 2 7 | bitrid |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( z = ( 2 x. i ) <-> ( i x. 2 ) = z ) ) | 
						
							| 9 | 8 | rexbidva |  |-  ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) <-> E. i e. ZZ ( i x. 2 ) = z ) ) | 
						
							| 10 |  | 2z |  |-  2 e. ZZ | 
						
							| 11 |  | divides |  |-  ( ( 2 e. ZZ /\ z e. ZZ ) -> ( 2 || z <-> E. i e. ZZ ( i x. 2 ) = z ) ) | 
						
							| 12 | 10 11 | mpan |  |-  ( z e. ZZ -> ( 2 || z <-> E. i e. ZZ ( i x. 2 ) = z ) ) | 
						
							| 13 | 9 12 | bitr4d |  |-  ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) <-> 2 || z ) ) | 
						
							| 14 | 13 | rabbiia |  |-  { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } = { z e. ZZ | 2 || z } | 
						
							| 15 | 1 14 | eqtri |  |-  Even = { z e. ZZ | 2 || z } |