| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-even |  |-  Even = { z e. ZZ | ( z / 2 ) e. ZZ } | 
						
							| 2 |  | simpr |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( z / 2 ) e. ZZ ) | 
						
							| 3 |  | oveq2 |  |-  ( i = ( z / 2 ) -> ( 2 x. i ) = ( 2 x. ( z / 2 ) ) ) | 
						
							| 4 | 3 | eqeq2d |  |-  ( i = ( z / 2 ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) /\ i = ( z / 2 ) ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) ) | 
						
							| 6 |  | zcn |  |-  ( z e. ZZ -> z e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z e. CC ) | 
						
							| 8 |  | 2cnd |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 e. CC ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 =/= 0 ) | 
						
							| 11 | 7 8 10 | divcan2d |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( 2 x. ( z / 2 ) ) = z ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z = ( 2 x. ( z / 2 ) ) ) | 
						
							| 13 | 2 5 12 | rspcedvd |  |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> E. i e. ZZ z = ( 2 x. i ) ) | 
						
							| 14 | 13 | ex |  |-  ( z e. ZZ -> ( ( z / 2 ) e. ZZ -> E. i e. ZZ z = ( 2 x. i ) ) ) | 
						
							| 15 |  | oveq1 |  |-  ( z = ( 2 x. i ) -> ( z / 2 ) = ( ( 2 x. i ) / 2 ) ) | 
						
							| 16 |  | zcn |  |-  ( i e. ZZ -> i e. CC ) | 
						
							| 17 | 16 | adantl |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) | 
						
							| 18 |  | 2cnd |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) | 
						
							| 19 | 9 | a1i |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 ) | 
						
							| 20 | 17 18 19 | divcan3d |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i ) | 
						
							| 21 | 15 20 | sylan9eqr |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) = i ) | 
						
							| 22 |  | simpr |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> i e. ZZ ) | 
						
							| 24 | 21 23 | eqeltrd |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) e. ZZ ) | 
						
							| 25 | 24 | rexlimdva2 |  |-  ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) -> ( z / 2 ) e. ZZ ) ) | 
						
							| 26 | 14 25 | impbid |  |-  ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> E. i e. ZZ z = ( 2 x. i ) ) ) | 
						
							| 27 | 26 | rabbiia |  |-  { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } | 
						
							| 28 | 1 27 | eqtri |  |-  Even = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } |