| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-even |
|- Even = { z e. ZZ | ( z / 2 ) e. ZZ } |
| 2 |
|
simpr |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( z / 2 ) e. ZZ ) |
| 3 |
|
oveq2 |
|- ( i = ( z / 2 ) -> ( 2 x. i ) = ( 2 x. ( z / 2 ) ) ) |
| 4 |
3
|
eqeq2d |
|- ( i = ( z / 2 ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) ) |
| 5 |
4
|
adantl |
|- ( ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) /\ i = ( z / 2 ) ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) ) |
| 6 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
| 7 |
6
|
adantr |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z e. CC ) |
| 8 |
|
2cnd |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 e. CC ) |
| 9 |
|
2ne0 |
|- 2 =/= 0 |
| 10 |
9
|
a1i |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 =/= 0 ) |
| 11 |
7 8 10
|
divcan2d |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( 2 x. ( z / 2 ) ) = z ) |
| 12 |
11
|
eqcomd |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z = ( 2 x. ( z / 2 ) ) ) |
| 13 |
2 5 12
|
rspcedvd |
|- ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> E. i e. ZZ z = ( 2 x. i ) ) |
| 14 |
13
|
ex |
|- ( z e. ZZ -> ( ( z / 2 ) e. ZZ -> E. i e. ZZ z = ( 2 x. i ) ) ) |
| 15 |
|
oveq1 |
|- ( z = ( 2 x. i ) -> ( z / 2 ) = ( ( 2 x. i ) / 2 ) ) |
| 16 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
| 17 |
16
|
adantl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) |
| 18 |
|
2cnd |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) |
| 19 |
9
|
a1i |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 ) |
| 20 |
17 18 19
|
divcan3d |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i ) |
| 21 |
15 20
|
sylan9eqr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) = i ) |
| 22 |
|
simpr |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ ) |
| 23 |
22
|
adantr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> i e. ZZ ) |
| 24 |
21 23
|
eqeltrd |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) e. ZZ ) |
| 25 |
24
|
rexlimdva2 |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) -> ( z / 2 ) e. ZZ ) ) |
| 26 |
14 25
|
impbid |
|- ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> E. i e. ZZ z = ( 2 x. i ) ) ) |
| 27 |
26
|
rabbiia |
|- { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } |
| 28 |
1 27
|
eqtri |
|- Even = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } |