| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-even | ⊢  Even   =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  /  2 )  ∈  ℤ } | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  ( 𝑧  /  2 )  ∈  ℤ ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑖  =  ( 𝑧  /  2 )  →  ( 2  ·  𝑖 )  =  ( 2  ·  ( 𝑧  /  2 ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑖  =  ( 𝑧  /  2 )  →  ( 𝑧  =  ( 2  ·  𝑖 )  ↔  𝑧  =  ( 2  ·  ( 𝑧  /  2 ) ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  ∧  𝑖  =  ( 𝑧  /  2 ) )  →  ( 𝑧  =  ( 2  ·  𝑖 )  ↔  𝑧  =  ( 2  ·  ( 𝑧  /  2 ) ) ) ) | 
						
							| 6 |  | zcn | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  𝑧  ∈  ℂ ) | 
						
							| 8 |  | 2cnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 9 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  2  ≠  0 ) | 
						
							| 11 | 7 8 10 | divcan2d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  ( 2  ·  ( 𝑧  /  2 ) )  =  𝑧 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  𝑧  =  ( 2  ·  ( 𝑧  /  2 ) ) ) | 
						
							| 13 | 2 5 12 | rspcedvd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  ( 𝑧  /  2 )  ∈  ℤ )  →  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑧  ∈  ℤ  →  ( ( 𝑧  /  2 )  ∈  ℤ  →  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑧  =  ( 2  ·  𝑖 )  →  ( 𝑧  /  2 )  =  ( ( 2  ·  𝑖 )  /  2 ) ) | 
						
							| 16 |  | zcn | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℂ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℂ ) | 
						
							| 18 |  | 2cnd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 19 | 9 | a1i | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  2  ≠  0 ) | 
						
							| 20 | 17 18 19 | divcan3d | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( ( 2  ·  𝑖 )  /  2 )  =  𝑖 ) | 
						
							| 21 | 15 20 | sylan9eqr | ⊢ ( ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝑧  =  ( 2  ·  𝑖 ) )  →  ( 𝑧  /  2 )  =  𝑖 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℤ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝑧  =  ( 2  ·  𝑖 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 24 | 21 23 | eqeltrd | ⊢ ( ( ( 𝑧  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝑧  =  ( 2  ·  𝑖 ) )  →  ( 𝑧  /  2 )  ∈  ℤ ) | 
						
							| 25 | 24 | rexlimdva2 | ⊢ ( 𝑧  ∈  ℤ  →  ( ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 )  →  ( 𝑧  /  2 )  ∈  ℤ ) ) | 
						
							| 26 | 14 25 | impbid | ⊢ ( 𝑧  ∈  ℤ  →  ( ( 𝑧  /  2 )  ∈  ℤ  ↔  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) ) ) | 
						
							| 27 | 26 | rabbiia | ⊢ { 𝑧  ∈  ℤ  ∣  ( 𝑧  /  2 )  ∈  ℤ }  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) } | 
						
							| 28 | 1 27 | eqtri | ⊢  Even   =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑧  =  ( 2  ·  𝑖 ) } |