| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenz |  |-  ( Z e. Even -> Z e. ZZ ) | 
						
							| 2 |  | peano2zm |  |-  ( Z e. ZZ -> ( Z - 1 ) e. ZZ ) | 
						
							| 3 | 1 2 | syl |  |-  ( Z e. Even -> ( Z - 1 ) e. ZZ ) | 
						
							| 4 |  | iseven |  |-  ( Z e. Even <-> ( Z e. ZZ /\ ( Z / 2 ) e. ZZ ) ) | 
						
							| 5 |  | zcn |  |-  ( Z e. ZZ -> Z e. CC ) | 
						
							| 6 |  | npcan1 |  |-  ( Z e. CC -> ( ( Z - 1 ) + 1 ) = Z ) | 
						
							| 7 | 5 6 | syl |  |-  ( Z e. ZZ -> ( ( Z - 1 ) + 1 ) = Z ) | 
						
							| 8 | 7 | eqcomd |  |-  ( Z e. ZZ -> Z = ( ( Z - 1 ) + 1 ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( Z e. ZZ -> ( Z / 2 ) = ( ( ( Z - 1 ) + 1 ) / 2 ) ) | 
						
							| 10 | 9 | eleq1d |  |-  ( Z e. ZZ -> ( ( Z / 2 ) e. ZZ <-> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( Z e. ZZ /\ ( Z / 2 ) e. ZZ ) -> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) | 
						
							| 12 | 4 11 | sylbi |  |-  ( Z e. Even -> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) | 
						
							| 13 |  | isodd |  |-  ( ( Z - 1 ) e. Odd <-> ( ( Z - 1 ) e. ZZ /\ ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 14 | 3 12 13 | sylanbrc |  |-  ( Z e. Even -> ( Z - 1 ) e. Odd ) |