Metamath Proof Explorer


Theorem evenm1odd

Description: The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020)

Ref Expression
Assertion evenm1odd ZEvenZ1Odd

Proof

Step Hyp Ref Expression
1 evenz ZEvenZ
2 peano2zm ZZ1
3 1 2 syl ZEvenZ1
4 iseven ZEvenZZ2
5 zcn ZZ
6 npcan1 ZZ-1+1=Z
7 5 6 syl ZZ-1+1=Z
8 7 eqcomd ZZ=Z-1+1
9 8 oveq1d ZZ2=Z-1+12
10 9 eleq1d ZZ2Z-1+12
11 10 biimpa ZZ2Z-1+12
12 4 11 sylbi ZEvenZ-1+12
13 isodd Z1OddZ1Z-1+12
14 3 12 13 sylanbrc ZEvenZ1Odd