| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
|
| 2 |
|
ply1mulgsum.b |
|
| 3 |
|
ply1mulgsum.a |
|
| 4 |
|
ply1mulgsum.c |
|
| 5 |
|
ply1mulgsum.x |
|
| 6 |
|
ply1mulgsum.pm |
|
| 7 |
|
ply1mulgsum.sm |
|
| 8 |
|
ply1mulgsum.rm |
|
| 9 |
|
ply1mulgsum.m |
|
| 10 |
|
ply1mulgsum.e |
|
| 11 |
|
eqid |
|
| 12 |
3 2 1 11
|
coe1ae0 |
|
| 13 |
12
|
3ad2ant2 |
|
| 14 |
4 2 1 11
|
coe1ae0 |
|
| 15 |
14
|
3ad2ant3 |
|
| 16 |
|
nn0addcl |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
adantr |
|
| 19 |
|
breq1 |
|
| 20 |
19
|
imbi1d |
|
| 21 |
20
|
ralbidv |
|
| 22 |
21
|
adantl |
|
| 23 |
|
r19.26 |
|
| 24 |
|
nn0cn |
|
| 25 |
24
|
adantl |
|
| 26 |
|
nn0cn |
|
| 27 |
26
|
adantr |
|
| 28 |
25 27
|
addcomd |
|
| 29 |
28
|
3adant3 |
|
| 30 |
29
|
breq1d |
|
| 31 |
|
nn0sumltlt |
|
| 32 |
30 31
|
sylbid |
|
| 33 |
32
|
3expia |
|
| 34 |
33
|
ancoms |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
imp |
|
| 37 |
36
|
imim1d |
|
| 38 |
37
|
com23 |
|
| 39 |
38
|
imp |
|
| 40 |
|
nn0sumltlt |
|
| 41 |
40
|
3expia |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
imp |
|
| 44 |
43
|
imim1d |
|
| 45 |
44
|
com23 |
|
| 46 |
45
|
imp |
|
| 47 |
39 46
|
anim12d |
|
| 48 |
47
|
imp |
|
| 49 |
48
|
ancomd |
|
| 50 |
49
|
exp31 |
|
| 51 |
50
|
com23 |
|
| 52 |
51
|
ralimdva |
|
| 53 |
23 52
|
biimtrrid |
|
| 54 |
53
|
imp |
|
| 55 |
18 22 54
|
rspcedvd |
|
| 56 |
55
|
exp31 |
|
| 57 |
56
|
com23 |
|
| 58 |
57
|
expd |
|
| 59 |
58
|
com34 |
|
| 60 |
59
|
impancom |
|
| 61 |
60
|
com14 |
|
| 62 |
61
|
impcom |
|
| 63 |
62
|
rexlimiva |
|
| 64 |
63
|
com13 |
|
| 65 |
64
|
rexlimiva |
|
| 66 |
15 65
|
mpcom |
|
| 67 |
13 66
|
mpd |
|