Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|
2 |
|
ply1mulgsum.b |
|
3 |
|
ply1mulgsum.a |
|
4 |
|
ply1mulgsum.c |
|
5 |
|
ply1mulgsum.x |
|
6 |
|
ply1mulgsum.pm |
|
7 |
|
ply1mulgsum.sm |
|
8 |
|
ply1mulgsum.rm |
|
9 |
|
ply1mulgsum.m |
|
10 |
|
ply1mulgsum.e |
|
11 |
|
eqid |
|
12 |
3 2 1 11
|
coe1ae0 |
|
13 |
12
|
3ad2ant2 |
|
14 |
4 2 1 11
|
coe1ae0 |
|
15 |
14
|
3ad2ant3 |
|
16 |
|
nn0addcl |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
|
breq1 |
|
20 |
19
|
imbi1d |
|
21 |
20
|
ralbidv |
|
22 |
21
|
adantl |
|
23 |
|
r19.26 |
|
24 |
|
nn0cn |
|
25 |
24
|
adantl |
|
26 |
|
nn0cn |
|
27 |
26
|
adantr |
|
28 |
25 27
|
addcomd |
|
29 |
28
|
3adant3 |
|
30 |
29
|
breq1d |
|
31 |
|
nn0sumltlt |
|
32 |
30 31
|
sylbid |
|
33 |
32
|
3expia |
|
34 |
33
|
ancoms |
|
35 |
34
|
adantr |
|
36 |
35
|
imp |
|
37 |
36
|
imim1d |
|
38 |
37
|
com23 |
|
39 |
38
|
imp |
|
40 |
|
nn0sumltlt |
|
41 |
40
|
3expia |
|
42 |
41
|
adantr |
|
43 |
42
|
imp |
|
44 |
43
|
imim1d |
|
45 |
44
|
com23 |
|
46 |
45
|
imp |
|
47 |
39 46
|
anim12d |
|
48 |
47
|
imp |
|
49 |
48
|
ancomd |
|
50 |
49
|
exp31 |
|
51 |
50
|
com23 |
|
52 |
51
|
ralimdva |
|
53 |
23 52
|
syl5bir |
|
54 |
53
|
imp |
|
55 |
18 22 54
|
rspcedvd |
|
56 |
55
|
exp31 |
|
57 |
56
|
com23 |
|
58 |
57
|
expd |
|
59 |
58
|
com34 |
|
60 |
59
|
impancom |
|
61 |
60
|
com14 |
|
62 |
61
|
impcom |
|
63 |
62
|
rexlimiva |
|
64 |
63
|
com13 |
|
65 |
64
|
rexlimiva |
|
66 |
15 65
|
mpcom |
|
67 |
13 66
|
mpd |
|