Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|
2 |
|
ply1mulgsum.b |
|
3 |
|
ply1mulgsum.a |
|
4 |
|
ply1mulgsum.c |
|
5 |
|
ply1mulgsum.x |
|
6 |
|
ply1mulgsum.pm |
|
7 |
|
ply1mulgsum.sm |
|
8 |
|
ply1mulgsum.rm |
|
9 |
|
ply1mulgsum.m |
|
10 |
|
ply1mulgsum.e |
|
11 |
1 6 8 2
|
coe1mul |
|
12 |
11
|
adantr |
|
13 |
12
|
fveq1d |
|
14 |
|
eqidd |
|
15 |
|
oveq2 |
|
16 |
|
fvoveq1 |
|
17 |
16
|
oveq2d |
|
18 |
15 17
|
mpteq12dv |
|
19 |
18
|
oveq2d |
|
20 |
19
|
adantl |
|
21 |
|
simpr |
|
22 |
|
ovexd |
|
23 |
14 20 21 22
|
fvmptd |
|
24 |
9
|
fveq2i |
|
25 |
10 24
|
eqtri |
|
26 |
|
simp1 |
|
27 |
26
|
adantr |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
|
ringcmn |
|
31 |
30
|
3ad2ant1 |
|
32 |
31
|
ad2antrr |
|
33 |
|
fzfid |
|
34 |
|
simpll1 |
|
35 |
34
|
adantr |
|
36 |
|
simp2 |
|
37 |
36
|
ad2antrr |
|
38 |
|
elfznn0 |
|
39 |
3 2 1 28
|
coe1fvalcl |
|
40 |
37 38 39
|
syl2an |
|
41 |
|
simp3 |
|
42 |
41
|
ad2antrr |
|
43 |
|
fznn0sub |
|
44 |
4 2 1 28
|
coe1fvalcl |
|
45 |
42 43 44
|
syl2an |
|
46 |
28 8
|
ringcl |
|
47 |
35 40 45 46
|
syl3anc |
|
48 |
47
|
ralrimiva |
|
49 |
28 32 33 48
|
gsummptcl |
|
50 |
49
|
ralrimiva |
|
51 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem3 |
|
52 |
51
|
adantr |
|
53 |
1 2 5 25 27 28 7 29 50 52 21
|
gsummoncoe1 |
|
54 |
|
vex |
|
55 |
|
csbov2g |
|
56 |
|
id |
|
57 |
|
oveq2 |
|
58 |
|
fvoveq1 |
|
59 |
58
|
oveq2d |
|
60 |
57 59
|
mpteq12dv |
|
61 |
60
|
adantl |
|
62 |
56 61
|
csbied |
|
63 |
62
|
oveq2d |
|
64 |
55 63
|
eqtrd |
|
65 |
54 64
|
mp1i |
|
66 |
|
fveq2 |
|
67 |
3
|
fveq1i |
|
68 |
66 67
|
eqtrdi |
|
69 |
|
oveq2 |
|
70 |
69
|
fveq2d |
|
71 |
4
|
fveq1i |
|
72 |
70 71
|
eqtrdi |
|
73 |
68 72
|
oveq12d |
|
74 |
73
|
cbvmptv |
|
75 |
74
|
a1i |
|
76 |
75
|
oveq2d |
|
77 |
53 65 76
|
3eqtrrd |
|
78 |
13 23 77
|
3eqtrd |
|
79 |
78
|
ralrimiva |
|
80 |
1
|
ply1ring |
|
81 |
2 6
|
ringcl |
|
82 |
80 81
|
syl3an1 |
|
83 |
|
eqid |
|
84 |
|
ringcmn |
|
85 |
80 84
|
syl |
|
86 |
85
|
3ad2ant1 |
|
87 |
|
nn0ex |
|
88 |
87
|
a1i |
|
89 |
1
|
ply1lmod |
|
90 |
89
|
3ad2ant1 |
|
91 |
90
|
adantr |
|
92 |
31
|
adantr |
|
93 |
|
fzfid |
|
94 |
|
simpll1 |
|
95 |
36
|
adantr |
|
96 |
95 38 39
|
syl2an |
|
97 |
41
|
adantr |
|
98 |
97 43 44
|
syl2an |
|
99 |
94 96 98 46
|
syl3anc |
|
100 |
99
|
ralrimiva |
|
101 |
28 92 93 100
|
gsummptcl |
|
102 |
26
|
adantr |
|
103 |
1
|
ply1sca |
|
104 |
102 103
|
syl |
|
105 |
104
|
fveq2d |
|
106 |
101 105
|
eleqtrd |
|
107 |
9
|
ringmgp |
|
108 |
80 107
|
syl |
|
109 |
108
|
3ad2ant1 |
|
110 |
109
|
adantr |
|
111 |
|
simpr |
|
112 |
5 1 2
|
vr1cl |
|
113 |
112
|
3ad2ant1 |
|
114 |
113
|
adantr |
|
115 |
9 2
|
mgpbas |
|
116 |
115 10
|
mulgnn0cl |
|
117 |
110 111 114 116
|
syl3anc |
|
118 |
|
eqid |
|
119 |
|
eqid |
|
120 |
2 118 7 119
|
lmodvscl |
|
121 |
91 106 117 120
|
syl3anc |
|
122 |
121
|
fmpttd |
|
123 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem4 |
|
124 |
2 83 86 88 122 123
|
gsumcl |
|
125 |
|
eqid |
|
126 |
|
eqid |
|
127 |
1 2 125 126
|
ply1coe1eq |
|
128 |
26 82 124 127
|
syl3anc |
|
129 |
79 128
|
mpbid |
|