| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
|
| 2 |
|
ply1mulgsum.b |
|
| 3 |
|
ply1mulgsum.a |
|
| 4 |
|
ply1mulgsum.c |
|
| 5 |
|
ply1mulgsum.x |
|
| 6 |
|
ply1mulgsum.pm |
|
| 7 |
|
ply1mulgsum.sm |
|
| 8 |
|
ply1mulgsum.rm |
|
| 9 |
|
ply1mulgsum.m |
|
| 10 |
|
ply1mulgsum.e |
|
| 11 |
1 6 8 2
|
coe1mul |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
fveq1d |
|
| 14 |
|
eqidd |
|
| 15 |
|
oveq2 |
|
| 16 |
|
fvoveq1 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
15 17
|
mpteq12dv |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
adantl |
|
| 21 |
|
simpr |
|
| 22 |
|
ovexd |
|
| 23 |
14 20 21 22
|
fvmptd |
|
| 24 |
9
|
fveq2i |
|
| 25 |
10 24
|
eqtri |
|
| 26 |
|
simp1 |
|
| 27 |
26
|
adantr |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
ringcmn |
|
| 31 |
30
|
3ad2ant1 |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
|
fzfid |
|
| 34 |
|
simpll1 |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simp2 |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
elfznn0 |
|
| 39 |
3 2 1 28
|
coe1fvalcl |
|
| 40 |
37 38 39
|
syl2an |
|
| 41 |
|
simp3 |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
|
fznn0sub |
|
| 44 |
4 2 1 28
|
coe1fvalcl |
|
| 45 |
42 43 44
|
syl2an |
|
| 46 |
28 8
|
ringcl |
|
| 47 |
35 40 45 46
|
syl3anc |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
28 32 33 48
|
gsummptcl |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem3 |
|
| 52 |
51
|
adantr |
|
| 53 |
1 2 5 25 27 28 7 29 50 52 21
|
gsummoncoe1 |
|
| 54 |
|
vex |
|
| 55 |
|
csbov2g |
|
| 56 |
|
id |
|
| 57 |
|
oveq2 |
|
| 58 |
|
fvoveq1 |
|
| 59 |
58
|
oveq2d |
|
| 60 |
57 59
|
mpteq12dv |
|
| 61 |
60
|
adantl |
|
| 62 |
56 61
|
csbied |
|
| 63 |
62
|
oveq2d |
|
| 64 |
55 63
|
eqtrd |
|
| 65 |
54 64
|
mp1i |
|
| 66 |
|
fveq2 |
|
| 67 |
3
|
fveq1i |
|
| 68 |
66 67
|
eqtrdi |
|
| 69 |
|
oveq2 |
|
| 70 |
69
|
fveq2d |
|
| 71 |
4
|
fveq1i |
|
| 72 |
70 71
|
eqtrdi |
|
| 73 |
68 72
|
oveq12d |
|
| 74 |
73
|
cbvmptv |
|
| 75 |
74
|
a1i |
|
| 76 |
75
|
oveq2d |
|
| 77 |
53 65 76
|
3eqtrrd |
|
| 78 |
13 23 77
|
3eqtrd |
|
| 79 |
78
|
ralrimiva |
|
| 80 |
1
|
ply1ring |
|
| 81 |
2 6
|
ringcl |
|
| 82 |
80 81
|
syl3an1 |
|
| 83 |
|
eqid |
|
| 84 |
|
ringcmn |
|
| 85 |
80 84
|
syl |
|
| 86 |
85
|
3ad2ant1 |
|
| 87 |
|
nn0ex |
|
| 88 |
87
|
a1i |
|
| 89 |
1
|
ply1lmod |
|
| 90 |
89
|
3ad2ant1 |
|
| 91 |
90
|
adantr |
|
| 92 |
31
|
adantr |
|
| 93 |
|
fzfid |
|
| 94 |
|
simpll1 |
|
| 95 |
36
|
adantr |
|
| 96 |
95 38 39
|
syl2an |
|
| 97 |
41
|
adantr |
|
| 98 |
97 43 44
|
syl2an |
|
| 99 |
94 96 98 46
|
syl3anc |
|
| 100 |
99
|
ralrimiva |
|
| 101 |
28 92 93 100
|
gsummptcl |
|
| 102 |
26
|
adantr |
|
| 103 |
1
|
ply1sca |
|
| 104 |
102 103
|
syl |
|
| 105 |
104
|
fveq2d |
|
| 106 |
101 105
|
eleqtrd |
|
| 107 |
9 2
|
mgpbas |
|
| 108 |
9
|
ringmgp |
|
| 109 |
80 108
|
syl |
|
| 110 |
109
|
3ad2ant1 |
|
| 111 |
110
|
adantr |
|
| 112 |
|
simpr |
|
| 113 |
5 1 2
|
vr1cl |
|
| 114 |
113
|
3ad2ant1 |
|
| 115 |
114
|
adantr |
|
| 116 |
107 10 111 112 115
|
mulgnn0cld |
|
| 117 |
|
eqid |
|
| 118 |
|
eqid |
|
| 119 |
2 117 7 118
|
lmodvscl |
|
| 120 |
91 106 116 119
|
syl3anc |
|
| 121 |
120
|
fmpttd |
|
| 122 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem4 |
|
| 123 |
2 83 86 88 121 122
|
gsumcl |
|
| 124 |
|
eqid |
|
| 125 |
|
eqid |
|
| 126 |
1 2 124 125
|
ply1coe1eq |
|
| 127 |
26 82 123 126
|
syl3anc |
|
| 128 |
79 127
|
mpbid |
|