Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1mulgsum.b |
|- B = ( Base ` P ) |
3 |
|
ply1mulgsum.a |
|- A = ( coe1 ` K ) |
4 |
|
ply1mulgsum.c |
|- C = ( coe1 ` L ) |
5 |
|
ply1mulgsum.x |
|- X = ( var1 ` R ) |
6 |
|
ply1mulgsum.pm |
|- .X. = ( .r ` P ) |
7 |
|
ply1mulgsum.sm |
|- .x. = ( .s ` P ) |
8 |
|
ply1mulgsum.rm |
|- .* = ( .r ` R ) |
9 |
|
ply1mulgsum.m |
|- M = ( mulGrp ` P ) |
10 |
|
ply1mulgsum.e |
|- .^ = ( .g ` M ) |
11 |
1 6 8 2
|
coe1mul |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( coe1 ` ( K .X. L ) ) = ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) ) |
12 |
11
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( coe1 ` ( K .X. L ) ) = ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) ) |
13 |
12
|
fveq1d |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( ( coe1 ` ( K .X. L ) ) ` n ) = ( ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) ` n ) ) |
14 |
|
eqidd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) = ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) ) |
15 |
|
oveq2 |
|- ( m = n -> ( 0 ... m ) = ( 0 ... n ) ) |
16 |
|
fvoveq1 |
|- ( m = n -> ( ( coe1 ` L ) ` ( m - i ) ) = ( ( coe1 ` L ) ` ( n - i ) ) ) |
17 |
16
|
oveq2d |
|- ( m = n -> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) = ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) |
18 |
15 17
|
mpteq12dv |
|- ( m = n -> ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) = ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) |
19 |
18
|
oveq2d |
|- ( m = n -> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) = ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ m = n ) -> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) = ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) ) |
21 |
|
simpr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> n e. NN0 ) |
22 |
|
ovexd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) e. _V ) |
23 |
14 20 21 22
|
fvmptd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( ( m e. NN0 |-> ( R gsum ( i e. ( 0 ... m ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( m - i ) ) ) ) ) ) ` n ) = ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) ) |
24 |
9
|
fveq2i |
|- ( .g ` M ) = ( .g ` ( mulGrp ` P ) ) |
25 |
10 24
|
eqtri |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
26 |
|
simp1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> R e. Ring ) |
27 |
26
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> R e. Ring ) |
28 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
29 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
30 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
31 |
30
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> R e. CMnd ) |
32 |
31
|
ad2antrr |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> R e. CMnd ) |
33 |
|
fzfid |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
34 |
|
simpll1 |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> R e. Ring ) |
35 |
34
|
adantr |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> R e. Ring ) |
36 |
|
simp2 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> K e. B ) |
37 |
36
|
ad2antrr |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> K e. B ) |
38 |
|
elfznn0 |
|- ( l e. ( 0 ... k ) -> l e. NN0 ) |
39 |
3 2 1 28
|
coe1fvalcl |
|- ( ( K e. B /\ l e. NN0 ) -> ( A ` l ) e. ( Base ` R ) ) |
40 |
37 38 39
|
syl2an |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( A ` l ) e. ( Base ` R ) ) |
41 |
|
simp3 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> L e. B ) |
42 |
41
|
ad2antrr |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> L e. B ) |
43 |
|
fznn0sub |
|- ( l e. ( 0 ... k ) -> ( k - l ) e. NN0 ) |
44 |
4 2 1 28
|
coe1fvalcl |
|- ( ( L e. B /\ ( k - l ) e. NN0 ) -> ( C ` ( k - l ) ) e. ( Base ` R ) ) |
45 |
42 43 44
|
syl2an |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( C ` ( k - l ) ) e. ( Base ` R ) ) |
46 |
28 8
|
ringcl |
|- ( ( R e. Ring /\ ( A ` l ) e. ( Base ` R ) /\ ( C ` ( k - l ) ) e. ( Base ` R ) ) -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) e. ( Base ` R ) ) |
47 |
35 40 45 46
|
syl3anc |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) e. ( Base ` R ) ) |
48 |
47
|
ralrimiva |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> A. l e. ( 0 ... k ) ( ( A ` l ) .* ( C ` ( k - l ) ) ) e. ( Base ` R ) ) |
49 |
28 32 33 48
|
gsummptcl |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) /\ k e. NN0 ) -> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. ( Base ` R ) ) |
50 |
49
|
ralrimiva |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> A. k e. NN0 ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. ( Base ` R ) ) |
51 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem3 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) finSupp ( 0g ` R ) ) |
52 |
51
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( k e. NN0 |-> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) finSupp ( 0g ` R ) ) |
53 |
1 2 5 25 27 28 7 29 50 52 21
|
gsummoncoe1 |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) = [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) |
54 |
|
vex |
|- n e. _V |
55 |
|
csbov2g |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) |
56 |
|
id |
|- ( n e. _V -> n e. _V ) |
57 |
|
oveq2 |
|- ( k = n -> ( 0 ... k ) = ( 0 ... n ) ) |
58 |
|
fvoveq1 |
|- ( k = n -> ( C ` ( k - l ) ) = ( C ` ( n - l ) ) ) |
59 |
58
|
oveq2d |
|- ( k = n -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) = ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) |
60 |
57 59
|
mpteq12dv |
|- ( k = n -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
61 |
60
|
adantl |
|- ( ( n e. _V /\ k = n ) -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
62 |
56 61
|
csbied |
|- ( n e. _V -> [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
63 |
62
|
oveq2d |
|- ( n e. _V -> ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
64 |
55 63
|
eqtrd |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
65 |
54 64
|
mp1i |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
66 |
|
fveq2 |
|- ( l = i -> ( A ` l ) = ( A ` i ) ) |
67 |
3
|
fveq1i |
|- ( A ` i ) = ( ( coe1 ` K ) ` i ) |
68 |
66 67
|
eqtrdi |
|- ( l = i -> ( A ` l ) = ( ( coe1 ` K ) ` i ) ) |
69 |
|
oveq2 |
|- ( l = i -> ( n - l ) = ( n - i ) ) |
70 |
69
|
fveq2d |
|- ( l = i -> ( C ` ( n - l ) ) = ( C ` ( n - i ) ) ) |
71 |
4
|
fveq1i |
|- ( C ` ( n - i ) ) = ( ( coe1 ` L ) ` ( n - i ) ) |
72 |
70 71
|
eqtrdi |
|- ( l = i -> ( C ` ( n - l ) ) = ( ( coe1 ` L ) ` ( n - i ) ) ) |
73 |
68 72
|
oveq12d |
|- ( l = i -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) |
74 |
73
|
cbvmptv |
|- ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) = ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) |
75 |
74
|
a1i |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) = ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) |
76 |
75
|
oveq2d |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) ) |
77 |
53 65 76
|
3eqtrrd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( R gsum ( i e. ( 0 ... n ) |-> ( ( ( coe1 ` K ) ` i ) .* ( ( coe1 ` L ) ` ( n - i ) ) ) ) ) = ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) ) |
78 |
13 23 77
|
3eqtrd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ n e. NN0 ) -> ( ( coe1 ` ( K .X. L ) ) ` n ) = ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) ) |
79 |
78
|
ralrimiva |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> A. n e. NN0 ( ( coe1 ` ( K .X. L ) ) ` n ) = ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) ) |
80 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
81 |
2 6
|
ringcl |
|- ( ( P e. Ring /\ K e. B /\ L e. B ) -> ( K .X. L ) e. B ) |
82 |
80 81
|
syl3an1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K .X. L ) e. B ) |
83 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
84 |
|
ringcmn |
|- ( P e. Ring -> P e. CMnd ) |
85 |
80 84
|
syl |
|- ( R e. Ring -> P e. CMnd ) |
86 |
85
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> P e. CMnd ) |
87 |
|
nn0ex |
|- NN0 e. _V |
88 |
87
|
a1i |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> NN0 e. _V ) |
89 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
90 |
89
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> P e. LMod ) |
91 |
90
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> P e. LMod ) |
92 |
31
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> R e. CMnd ) |
93 |
|
fzfid |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
94 |
|
simpll1 |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> R e. Ring ) |
95 |
36
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> K e. B ) |
96 |
95 38 39
|
syl2an |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( A ` l ) e. ( Base ` R ) ) |
97 |
41
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> L e. B ) |
98 |
97 43 44
|
syl2an |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( C ` ( k - l ) ) e. ( Base ` R ) ) |
99 |
94 96 98 46
|
syl3anc |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) e. ( Base ` R ) ) |
100 |
99
|
ralrimiva |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> A. l e. ( 0 ... k ) ( ( A ` l ) .* ( C ` ( k - l ) ) ) e. ( Base ` R ) ) |
101 |
28 92 93 100
|
gsummptcl |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. ( Base ` R ) ) |
102 |
26
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> R e. Ring ) |
103 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
104 |
102 103
|
syl |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> R = ( Scalar ` P ) ) |
105 |
104
|
fveq2d |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
106 |
101 105
|
eleqtrd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. ( Base ` ( Scalar ` P ) ) ) |
107 |
9
|
ringmgp |
|- ( P e. Ring -> M e. Mnd ) |
108 |
80 107
|
syl |
|- ( R e. Ring -> M e. Mnd ) |
109 |
108
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> M e. Mnd ) |
110 |
109
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> M e. Mnd ) |
111 |
|
simpr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> k e. NN0 ) |
112 |
5 1 2
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
113 |
112
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> X e. B ) |
114 |
113
|
adantr |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> X e. B ) |
115 |
9 2
|
mgpbas |
|- B = ( Base ` M ) |
116 |
115 10
|
mulgnn0cl |
|- ( ( M e. Mnd /\ k e. NN0 /\ X e. B ) -> ( k .^ X ) e. B ) |
117 |
110 111 114 116
|
syl3anc |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
118 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
119 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
120 |
2 118 7 119
|
lmodvscl |
|- ( ( P e. LMod /\ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. ( Base ` ( Scalar ` P ) ) /\ ( k .^ X ) e. B ) -> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) e. B ) |
121 |
91 106 117 120
|
syl3anc |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) e. B ) |
122 |
121
|
fmpttd |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) : NN0 --> B ) |
123 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem4 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |
124 |
2 83 86 88 122 123
|
gsumcl |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) e. B ) |
125 |
|
eqid |
|- ( coe1 ` ( K .X. L ) ) = ( coe1 ` ( K .X. L ) ) |
126 |
|
eqid |
|- ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) |
127 |
1 2 125 126
|
ply1coe1eq |
|- ( ( R e. Ring /\ ( K .X. L ) e. B /\ ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) e. B ) -> ( A. n e. NN0 ( ( coe1 ` ( K .X. L ) ) ` n ) = ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) <-> ( K .X. L ) = ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ) |
128 |
26 82 124 127
|
syl3anc |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. n e. NN0 ( ( coe1 ` ( K .X. L ) ) ` n ) = ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ` n ) <-> ( K .X. L ) = ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) ) |
129 |
79 128
|
mpbid |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K .X. L ) = ( P gsum ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) ) ) |