| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1mulgsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | ply1mulgsum.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | ply1mulgsum.a |  |-  A = ( coe1 ` K ) | 
						
							| 4 |  | ply1mulgsum.c |  |-  C = ( coe1 ` L ) | 
						
							| 5 |  | ply1mulgsum.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | ply1mulgsum.pm |  |-  .X. = ( .r ` P ) | 
						
							| 7 |  | ply1mulgsum.sm |  |-  .x. = ( .s ` P ) | 
						
							| 8 |  | ply1mulgsum.rm |  |-  .* = ( .r ` R ) | 
						
							| 9 |  | ply1mulgsum.m |  |-  M = ( mulGrp ` P ) | 
						
							| 10 |  | ply1mulgsum.e |  |-  .^ = ( .g ` M ) | 
						
							| 11 |  | fvexd |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( 0g ` P ) e. _V ) | 
						
							| 12 |  | ovexd |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) e. _V ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 | ply1mulgsumlem2 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) | 
						
							| 14 |  | vex |  |-  n e. _V | 
						
							| 15 |  | csbov12g |  |-  ( n e. _V -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. [_ n / k ]_ ( k .^ X ) ) ) | 
						
							| 16 |  | csbov2g |  |-  ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) | 
						
							| 17 |  | id |  |-  ( n e. _V -> n e. _V ) | 
						
							| 18 |  | oveq2 |  |-  ( k = n -> ( 0 ... k ) = ( 0 ... n ) ) | 
						
							| 19 |  | fvoveq1 |  |-  ( k = n -> ( C ` ( k - l ) ) = ( C ` ( n - l ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( k = n -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) = ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) | 
						
							| 21 | 18 20 | mpteq12dv |  |-  ( k = n -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( n e. _V /\ k = n ) -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) | 
						
							| 23 | 17 22 | csbied |  |-  ( n e. _V -> [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( n e. _V -> ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) | 
						
							| 25 | 16 24 | eqtrd |  |-  ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) | 
						
							| 26 |  | csbov1g |  |-  ( n e. _V -> [_ n / k ]_ ( k .^ X ) = ( [_ n / k ]_ k .^ X ) ) | 
						
							| 27 |  | csbvarg |  |-  ( n e. _V -> [_ n / k ]_ k = n ) | 
						
							| 28 | 27 | oveq1d |  |-  ( n e. _V -> ( [_ n / k ]_ k .^ X ) = ( n .^ X ) ) | 
						
							| 29 | 26 28 | eqtrd |  |-  ( n e. _V -> [_ n / k ]_ ( k .^ X ) = ( n .^ X ) ) | 
						
							| 30 | 25 29 | oveq12d |  |-  ( n e. _V -> ( [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. [_ n / k ]_ ( k .^ X ) ) = ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) .x. ( n .^ X ) ) ) | 
						
							| 31 | 15 30 | eqtrd |  |-  ( n e. _V -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) .x. ( n .^ X ) ) ) | 
						
							| 32 | 14 31 | ax-mp |  |-  [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) .x. ( n .^ X ) ) | 
						
							| 33 |  | oveq1 |  |-  ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) -> ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) .x. ( n .^ X ) ) = ( ( 0g ` R ) .x. ( n .^ X ) ) ) | 
						
							| 34 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> R = ( Scalar ` P ) ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> R = ( Scalar ` P ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( 0g ` R ) .x. ( n .^ X ) ) = ( ( 0g ` ( Scalar ` P ) ) .x. ( n .^ X ) ) ) | 
						
							| 39 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> P e. LMod ) | 
						
							| 41 | 40 | ad2antrr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> P e. LMod ) | 
						
							| 42 | 9 2 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 43 | 1 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 44 | 9 | ringmgp |  |-  ( P e. Ring -> M e. Mnd ) | 
						
							| 45 | 43 44 | syl |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 46 | 45 | 3ad2ant1 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> M e. Mnd ) | 
						
							| 47 | 46 | ad2antrr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> M e. Mnd ) | 
						
							| 48 |  | simpr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 49 | 5 1 2 | vr1cl |  |-  ( R e. Ring -> X e. B ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> X e. B ) | 
						
							| 51 | 50 | ad2antrr |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> X e. B ) | 
						
							| 52 | 42 10 47 48 51 | mulgnn0cld |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( n .^ X ) e. B ) | 
						
							| 53 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 54 |  | eqid |  |-  ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) | 
						
							| 55 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 56 | 2 53 7 54 55 | lmod0vs |  |-  ( ( P e. LMod /\ ( n .^ X ) e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .x. ( n .^ X ) ) = ( 0g ` P ) ) | 
						
							| 57 | 41 52 56 | syl2anc |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( 0g ` ( Scalar ` P ) ) .x. ( n .^ X ) ) = ( 0g ` P ) ) | 
						
							| 58 | 38 57 | eqtrd |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( 0g ` R ) .x. ( n .^ X ) ) = ( 0g ` P ) ) | 
						
							| 59 | 33 58 | sylan9eqr |  |-  ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) .x. ( n .^ X ) ) = ( 0g ` P ) ) | 
						
							| 60 | 32 59 | eqtrid |  |-  ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) | 
						
							| 61 | 60 | ex |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) ) | 
						
							| 62 | 61 | imim2d |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( s < n -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) ) ) | 
						
							| 63 | 62 | ralimdva |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) -> ( A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> A. n e. NN0 ( s < n -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) ) ) | 
						
							| 64 | 63 | reximdva |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) ) ) | 
						
							| 65 | 13 64 | mpd |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) ) | 
						
							| 66 | 11 12 65 | mptnn0fsupp |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |