Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1mulgsum.b |
|- B = ( Base ` P ) |
3 |
|
ply1mulgsum.a |
|- A = ( coe1 ` K ) |
4 |
|
ply1mulgsum.c |
|- C = ( coe1 ` L ) |
5 |
|
ply1mulgsum.x |
|- X = ( var1 ` R ) |
6 |
|
ply1mulgsum.pm |
|- .X. = ( .r ` P ) |
7 |
|
ply1mulgsum.sm |
|- .x. = ( .s ` P ) |
8 |
|
ply1mulgsum.rm |
|- .* = ( .r ` R ) |
9 |
|
ply1mulgsum.m |
|- M = ( mulGrp ` P ) |
10 |
|
ply1mulgsum.e |
|- .^ = ( .g ` M ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. z e. NN0 A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) |
12 |
|
2nn0 |
|- 2 e. NN0 |
13 |
12
|
a1i |
|- ( z e. NN0 -> 2 e. NN0 ) |
14 |
|
id |
|- ( z e. NN0 -> z e. NN0 ) |
15 |
13 14
|
nn0mulcld |
|- ( z e. NN0 -> ( 2 x. z ) e. NN0 ) |
16 |
15
|
ad2antrr |
|- ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) -> ( 2 x. z ) e. NN0 ) |
17 |
|
breq1 |
|- ( s = ( 2 x. z ) -> ( s < n <-> ( 2 x. z ) < n ) ) |
18 |
17
|
imbi1d |
|- ( s = ( 2 x. z ) -> ( ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) <-> ( ( 2 x. z ) < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
19 |
18
|
ralbidv |
|- ( s = ( 2 x. z ) -> ( A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) <-> A. n e. NN0 ( ( 2 x. z ) < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ s = ( 2 x. z ) ) -> ( A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) <-> A. n e. NN0 ( ( 2 x. z ) < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
21 |
|
2re |
|- 2 e. RR |
22 |
21
|
a1i |
|- ( z e. NN0 -> 2 e. RR ) |
23 |
|
nn0re |
|- ( z e. NN0 -> z e. RR ) |
24 |
22 23
|
remulcld |
|- ( z e. NN0 -> ( 2 x. z ) e. RR ) |
25 |
24
|
ad2antrr |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( 2 x. z ) e. RR ) |
26 |
|
nn0re |
|- ( n e. NN0 -> n e. RR ) |
27 |
26
|
adantl |
|- ( ( z e. NN0 /\ n e. NN0 ) -> n e. RR ) |
28 |
27
|
adantr |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> n e. RR ) |
29 |
|
elfznn0 |
|- ( l e. ( 0 ... n ) -> l e. NN0 ) |
30 |
|
nn0re |
|- ( l e. NN0 -> l e. RR ) |
31 |
29 30
|
syl |
|- ( l e. ( 0 ... n ) -> l e. RR ) |
32 |
31
|
adantl |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> l e. RR ) |
33 |
25 28 32
|
ltsub1d |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( 2 x. z ) < n <-> ( ( 2 x. z ) - l ) < ( n - l ) ) ) |
34 |
23
|
ad2antrr |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> z e. RR ) |
35 |
32 34 25
|
lesub2d |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( l <_ z <-> ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> ( l <_ z <-> ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) ) ) |
37 |
24 23
|
resubcld |
|- ( z e. NN0 -> ( ( 2 x. z ) - z ) e. RR ) |
38 |
37
|
ad2antrr |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( 2 x. z ) - z ) e. RR ) |
39 |
24
|
adantr |
|- ( ( z e. NN0 /\ n e. NN0 ) -> ( 2 x. z ) e. RR ) |
40 |
|
resubcl |
|- ( ( ( 2 x. z ) e. RR /\ l e. RR ) -> ( ( 2 x. z ) - l ) e. RR ) |
41 |
39 31 40
|
syl2an |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( 2 x. z ) - l ) e. RR ) |
42 |
|
resubcl |
|- ( ( n e. RR /\ l e. RR ) -> ( n - l ) e. RR ) |
43 |
27 31 42
|
syl2an |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( n - l ) e. RR ) |
44 |
|
lelttr |
|- ( ( ( ( 2 x. z ) - z ) e. RR /\ ( ( 2 x. z ) - l ) e. RR /\ ( n - l ) e. RR ) -> ( ( ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> ( ( 2 x. z ) - z ) < ( n - l ) ) ) |
45 |
38 41 43 44
|
syl3anc |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> ( ( 2 x. z ) - z ) < ( n - l ) ) ) |
46 |
|
nn0cn |
|- ( z e. NN0 -> z e. CC ) |
47 |
|
2txmxeqx |
|- ( z e. CC -> ( ( 2 x. z ) - z ) = z ) |
48 |
46 47
|
syl |
|- ( z e. NN0 -> ( ( 2 x. z ) - z ) = z ) |
49 |
48
|
ad2antrr |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( 2 x. z ) - z ) = z ) |
50 |
49
|
breq1d |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( ( 2 x. z ) - z ) < ( n - l ) <-> z < ( n - l ) ) ) |
51 |
45 50
|
sylibd |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> z < ( n - l ) ) ) |
52 |
51
|
expcomd |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( ( 2 x. z ) - l ) < ( n - l ) -> ( ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) -> z < ( n - l ) ) ) ) |
53 |
52
|
imp |
|- ( ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> ( ( ( 2 x. z ) - z ) <_ ( ( 2 x. z ) - l ) -> z < ( n - l ) ) ) |
54 |
36 53
|
sylbid |
|- ( ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) /\ ( ( 2 x. z ) - l ) < ( n - l ) ) -> ( l <_ z -> z < ( n - l ) ) ) |
55 |
54
|
ex |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( ( 2 x. z ) - l ) < ( n - l ) -> ( l <_ z -> z < ( n - l ) ) ) ) |
56 |
33 55
|
sylbid |
|- ( ( ( z e. NN0 /\ n e. NN0 ) /\ l e. ( 0 ... n ) ) -> ( ( 2 x. z ) < n -> ( l <_ z -> z < ( n - l ) ) ) ) |
57 |
56
|
ex |
|- ( ( z e. NN0 /\ n e. NN0 ) -> ( l e. ( 0 ... n ) -> ( ( 2 x. z ) < n -> ( l <_ z -> z < ( n - l ) ) ) ) ) |
58 |
57
|
com23 |
|- ( ( z e. NN0 /\ n e. NN0 ) -> ( ( 2 x. z ) < n -> ( l e. ( 0 ... n ) -> ( l <_ z -> z < ( n - l ) ) ) ) ) |
59 |
58
|
ex |
|- ( z e. NN0 -> ( n e. NN0 -> ( ( 2 x. z ) < n -> ( l e. ( 0 ... n ) -> ( l <_ z -> z < ( n - l ) ) ) ) ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) -> ( n e. NN0 -> ( ( 2 x. z ) < n -> ( l e. ( 0 ... n ) -> ( l <_ z -> z < ( n - l ) ) ) ) ) ) |
61 |
60
|
imp41 |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( l <_ z -> z < ( n - l ) ) ) |
62 |
61
|
impcom |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> z < ( n - l ) ) |
63 |
|
fznn0sub2 |
|- ( l e. ( 0 ... n ) -> ( n - l ) e. ( 0 ... n ) ) |
64 |
|
elfznn0 |
|- ( ( n - l ) e. ( 0 ... n ) -> ( n - l ) e. NN0 ) |
65 |
|
breq2 |
|- ( x = ( n - l ) -> ( z < x <-> z < ( n - l ) ) ) |
66 |
|
fveqeq2 |
|- ( x = ( n - l ) -> ( ( A ` x ) = ( 0g ` R ) <-> ( A ` ( n - l ) ) = ( 0g ` R ) ) ) |
67 |
|
fveqeq2 |
|- ( x = ( n - l ) -> ( ( C ` x ) = ( 0g ` R ) <-> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) |
68 |
66 67
|
anbi12d |
|- ( x = ( n - l ) -> ( ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) <-> ( ( A ` ( n - l ) ) = ( 0g ` R ) /\ ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
69 |
65 68
|
imbi12d |
|- ( x = ( n - l ) -> ( ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) <-> ( z < ( n - l ) -> ( ( A ` ( n - l ) ) = ( 0g ` R ) /\ ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) ) |
70 |
69
|
rspcva |
|- ( ( ( n - l ) e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) -> ( z < ( n - l ) -> ( ( A ` ( n - l ) ) = ( 0g ` R ) /\ ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
71 |
|
simpr |
|- ( ( ( A ` ( n - l ) ) = ( 0g ` R ) /\ ( C ` ( n - l ) ) = ( 0g ` R ) ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) |
72 |
70 71
|
syl6 |
|- ( ( ( n - l ) e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) |
73 |
72
|
ex |
|- ( ( n - l ) e. NN0 -> ( A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
74 |
63 64 73
|
3syl |
|- ( l e. ( 0 ... n ) -> ( A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
75 |
74
|
com12 |
|- ( A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( l e. ( 0 ... n ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
76 |
75
|
ad4antlr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( l e. ( 0 ... n ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) ) |
77 |
76
|
imp |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) |
78 |
77
|
adantl |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( z < ( n - l ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) ) |
79 |
62 78
|
mpd |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( C ` ( n - l ) ) = ( 0g ` R ) ) |
80 |
79
|
oveq2d |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( ( A ` l ) .* ( 0g ` R ) ) ) |
81 |
|
simplr1 |
|- ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) -> R e. Ring ) |
82 |
81
|
ad2antrr |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> R e. Ring ) |
83 |
82
|
adantl |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> R e. Ring ) |
84 |
|
simplr2 |
|- ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) -> K e. B ) |
85 |
84
|
adantr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> K e. B ) |
86 |
85 29
|
anim12i |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( K e. B /\ l e. NN0 ) ) |
87 |
86
|
adantl |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( K e. B /\ l e. NN0 ) ) |
88 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
89 |
3 2 1 88
|
coe1fvalcl |
|- ( ( K e. B /\ l e. NN0 ) -> ( A ` l ) e. ( Base ` R ) ) |
90 |
87 89
|
syl |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( A ` l ) e. ( Base ` R ) ) |
91 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
92 |
88 8 91
|
ringrz |
|- ( ( R e. Ring /\ ( A ` l ) e. ( Base ` R ) ) -> ( ( A ` l ) .* ( 0g ` R ) ) = ( 0g ` R ) ) |
93 |
83 90 92
|
syl2anc |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( A ` l ) .* ( 0g ` R ) ) = ( 0g ` R ) ) |
94 |
80 93
|
eqtrd |
|- ( ( l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( 0g ` R ) ) |
95 |
|
ltnle |
|- ( ( z e. RR /\ l e. RR ) -> ( z < l <-> -. l <_ z ) ) |
96 |
23 30 95
|
syl2an |
|- ( ( z e. NN0 /\ l e. NN0 ) -> ( z < l <-> -. l <_ z ) ) |
97 |
96
|
bicomd |
|- ( ( z e. NN0 /\ l e. NN0 ) -> ( -. l <_ z <-> z < l ) ) |
98 |
97
|
expcom |
|- ( l e. NN0 -> ( z e. NN0 -> ( -. l <_ z <-> z < l ) ) ) |
99 |
98 29
|
syl11 |
|- ( z e. NN0 -> ( l e. ( 0 ... n ) -> ( -. l <_ z <-> z < l ) ) ) |
100 |
99
|
ad4antr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( l e. ( 0 ... n ) -> ( -. l <_ z <-> z < l ) ) ) |
101 |
100
|
imp |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( -. l <_ z <-> z < l ) ) |
102 |
|
breq2 |
|- ( x = l -> ( z < x <-> z < l ) ) |
103 |
|
fveqeq2 |
|- ( x = l -> ( ( A ` x ) = ( 0g ` R ) <-> ( A ` l ) = ( 0g ` R ) ) ) |
104 |
|
fveqeq2 |
|- ( x = l -> ( ( C ` x ) = ( 0g ` R ) <-> ( C ` l ) = ( 0g ` R ) ) ) |
105 |
103 104
|
anbi12d |
|- ( x = l -> ( ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) <-> ( ( A ` l ) = ( 0g ` R ) /\ ( C ` l ) = ( 0g ` R ) ) ) ) |
106 |
102 105
|
imbi12d |
|- ( x = l -> ( ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) <-> ( z < l -> ( ( A ` l ) = ( 0g ` R ) /\ ( C ` l ) = ( 0g ` R ) ) ) ) ) |
107 |
106
|
rspcva |
|- ( ( l e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) -> ( z < l -> ( ( A ` l ) = ( 0g ` R ) /\ ( C ` l ) = ( 0g ` R ) ) ) ) |
108 |
|
simpl |
|- ( ( ( A ` l ) = ( 0g ` R ) /\ ( C ` l ) = ( 0g ` R ) ) -> ( A ` l ) = ( 0g ` R ) ) |
109 |
107 108
|
syl6 |
|- ( ( l e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) -> ( z < l -> ( A ` l ) = ( 0g ` R ) ) ) |
110 |
109
|
ex |
|- ( l e. NN0 -> ( A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( z < l -> ( A ` l ) = ( 0g ` R ) ) ) ) |
111 |
110 29
|
syl11 |
|- ( A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( l e. ( 0 ... n ) -> ( z < l -> ( A ` l ) = ( 0g ` R ) ) ) ) |
112 |
111
|
ad4antlr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( l e. ( 0 ... n ) -> ( z < l -> ( A ` l ) = ( 0g ` R ) ) ) ) |
113 |
112
|
imp |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( z < l -> ( A ` l ) = ( 0g ` R ) ) ) |
114 |
101 113
|
sylbid |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( -. l <_ z -> ( A ` l ) = ( 0g ` R ) ) ) |
115 |
114
|
impcom |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( A ` l ) = ( 0g ` R ) ) |
116 |
115
|
oveq1d |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( ( 0g ` R ) .* ( C ` ( n - l ) ) ) ) |
117 |
82
|
adantl |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> R e. Ring ) |
118 |
|
simplr3 |
|- ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) -> L e. B ) |
119 |
118
|
adantr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> L e. B ) |
120 |
|
fznn0sub |
|- ( l e. ( 0 ... n ) -> ( n - l ) e. NN0 ) |
121 |
119 120
|
anim12i |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( L e. B /\ ( n - l ) e. NN0 ) ) |
122 |
121
|
adantl |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( L e. B /\ ( n - l ) e. NN0 ) ) |
123 |
4 2 1 88
|
coe1fvalcl |
|- ( ( L e. B /\ ( n - l ) e. NN0 ) -> ( C ` ( n - l ) ) e. ( Base ` R ) ) |
124 |
122 123
|
syl |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( C ` ( n - l ) ) e. ( Base ` R ) ) |
125 |
88 8 91
|
ringlz |
|- ( ( R e. Ring /\ ( C ` ( n - l ) ) e. ( Base ` R ) ) -> ( ( 0g ` R ) .* ( C ` ( n - l ) ) ) = ( 0g ` R ) ) |
126 |
117 124 125
|
syl2anc |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( 0g ` R ) .* ( C ` ( n - l ) ) ) = ( 0g ` R ) ) |
127 |
116 126
|
eqtrd |
|- ( ( -. l <_ z /\ ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) ) -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( 0g ` R ) ) |
128 |
94 127
|
pm2.61ian |
|- ( ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) /\ l e. ( 0 ... n ) ) -> ( ( A ` l ) .* ( C ` ( n - l ) ) ) = ( 0g ` R ) ) |
129 |
128
|
mpteq2dva |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( 0g ` R ) ) ) |
130 |
129
|
oveq2d |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( 0g ` R ) ) ) ) |
131 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
132 |
131
|
3ad2ant1 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> R e. Mnd ) |
133 |
|
ovex |
|- ( 0 ... n ) e. _V |
134 |
132 133
|
jctir |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( R e. Mnd /\ ( 0 ... n ) e. _V ) ) |
135 |
134
|
ad3antlr |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( R e. Mnd /\ ( 0 ... n ) e. _V ) ) |
136 |
91
|
gsumz |
|- ( ( R e. Mnd /\ ( 0 ... n ) e. _V ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
137 |
135 136
|
syl |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
138 |
130 137
|
eqtrd |
|- ( ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) /\ ( 2 x. z ) < n ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) |
139 |
138
|
ex |
|- ( ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) /\ n e. NN0 ) -> ( ( 2 x. z ) < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |
140 |
139
|
ralrimiva |
|- ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) -> A. n e. NN0 ( ( 2 x. z ) < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |
141 |
16 20 140
|
rspcedvd |
|- ( ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) /\ ( R e. Ring /\ K e. B /\ L e. B ) ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |
142 |
141
|
ex |
|- ( ( z e. NN0 /\ A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) ) -> ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
143 |
142
|
rexlimiva |
|- ( E. z e. NN0 A. x e. NN0 ( z < x -> ( ( A ` x ) = ( 0g ` R ) /\ ( C ` x ) = ( 0g ` R ) ) ) -> ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
144 |
11 143
|
mpcom |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |