Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1mulgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1mulgsum.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
4 |
|
ply1mulgsum.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
5 |
|
ply1mulgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
ply1mulgsum.pm |
⊢ × = ( .r ‘ 𝑃 ) |
7 |
|
ply1mulgsum.sm |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
ply1mulgsum.rm |
⊢ ∗ = ( .r ‘ 𝑅 ) |
9 |
|
ply1mulgsum.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
10 |
|
ply1mulgsum.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑧 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
12 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
13 |
12
|
a1i |
⊢ ( 𝑧 ∈ ℕ0 → 2 ∈ ℕ0 ) |
14 |
|
id |
⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℕ0 ) |
15 |
13 14
|
nn0mulcld |
⊢ ( 𝑧 ∈ ℕ0 → ( 2 · 𝑧 ) ∈ ℕ0 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) → ( 2 · 𝑧 ) ∈ ℕ0 ) |
17 |
|
breq1 |
⊢ ( 𝑠 = ( 2 · 𝑧 ) → ( 𝑠 < 𝑛 ↔ ( 2 · 𝑧 ) < 𝑛 ) ) |
18 |
17
|
imbi1d |
⊢ ( 𝑠 = ( 2 · 𝑧 ) → ( ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑠 = ( 2 · 𝑧 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑠 = ( 2 · 𝑧 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
21 |
|
2re |
⊢ 2 ∈ ℝ |
22 |
21
|
a1i |
⊢ ( 𝑧 ∈ ℕ0 → 2 ∈ ℝ ) |
23 |
|
nn0re |
⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℝ ) |
24 |
22 23
|
remulcld |
⊢ ( 𝑧 ∈ ℕ0 → ( 2 · 𝑧 ) ∈ ℝ ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 2 · 𝑧 ) ∈ ℝ ) |
26 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
27 |
26
|
adantl |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑛 ∈ ℝ ) |
29 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → 𝑙 ∈ ℕ0 ) |
30 |
|
nn0re |
⊢ ( 𝑙 ∈ ℕ0 → 𝑙 ∈ ℝ ) |
31 |
29 30
|
syl |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → 𝑙 ∈ ℝ ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑙 ∈ ℝ ) |
33 |
25 28 32
|
ltsub1d |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 2 · 𝑧 ) < 𝑛 ↔ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) ) |
34 |
23
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑧 ∈ ℝ ) |
35 |
32 34 25
|
lesub2d |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑙 ≤ 𝑧 ↔ ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → ( 𝑙 ≤ 𝑧 ↔ ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) ) ) |
37 |
24 23
|
resubcld |
⊢ ( 𝑧 ∈ ℕ0 → ( ( 2 · 𝑧 ) − 𝑧 ) ∈ ℝ ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 2 · 𝑧 ) − 𝑧 ) ∈ ℝ ) |
39 |
24
|
adantr |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑧 ) ∈ ℝ ) |
40 |
|
resubcl |
⊢ ( ( ( 2 · 𝑧 ) ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( ( 2 · 𝑧 ) − 𝑙 ) ∈ ℝ ) |
41 |
39 31 40
|
syl2an |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 2 · 𝑧 ) − 𝑙 ) ∈ ℝ ) |
42 |
|
resubcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( 𝑛 − 𝑙 ) ∈ ℝ ) |
43 |
27 31 42
|
syl2an |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑛 − 𝑙 ) ∈ ℝ ) |
44 |
|
lelttr |
⊢ ( ( ( ( 2 · 𝑧 ) − 𝑧 ) ∈ ℝ ∧ ( ( 2 · 𝑧 ) − 𝑙 ) ∈ ℝ ∧ ( 𝑛 − 𝑙 ) ∈ ℝ ) → ( ( ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → ( ( 2 · 𝑧 ) − 𝑧 ) < ( 𝑛 − 𝑙 ) ) ) |
45 |
38 41 43 44
|
syl3anc |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → ( ( 2 · 𝑧 ) − 𝑧 ) < ( 𝑛 − 𝑙 ) ) ) |
46 |
|
nn0cn |
⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ ) |
47 |
|
2txmxeqx |
⊢ ( 𝑧 ∈ ℂ → ( ( 2 · 𝑧 ) − 𝑧 ) = 𝑧 ) |
48 |
46 47
|
syl |
⊢ ( 𝑧 ∈ ℕ0 → ( ( 2 · 𝑧 ) − 𝑧 ) = 𝑧 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 2 · 𝑧 ) − 𝑧 ) = 𝑧 ) |
50 |
49
|
breq1d |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 2 · 𝑧 ) − 𝑧 ) < ( 𝑛 − 𝑙 ) ↔ 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
51 |
45 50
|
sylibd |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
52 |
51
|
expcomd |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) → ( ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → ( ( ( 2 · 𝑧 ) − 𝑧 ) ≤ ( ( 2 · 𝑧 ) − 𝑙 ) → 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
54 |
36 53
|
sylbid |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ∧ ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
55 |
54
|
ex |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( ( 2 · 𝑧 ) − 𝑙 ) < ( 𝑛 − 𝑙 ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) |
56 |
33 55
|
sylbid |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) |
57 |
56
|
ex |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) ) |
58 |
57
|
com23 |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) ) |
59 |
58
|
ex |
⊢ ( 𝑧 ∈ ℕ0 → ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) ) ) ) |
61 |
60
|
imp41 |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑙 ≤ 𝑧 → 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
62 |
61
|
impcom |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → 𝑧 < ( 𝑛 − 𝑙 ) ) |
63 |
|
fznn0sub2 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑙 ) ∈ ( 0 ... 𝑛 ) ) |
64 |
|
elfznn0 |
⊢ ( ( 𝑛 − 𝑙 ) ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
65 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑛 − 𝑙 ) → ( 𝑧 < 𝑥 ↔ 𝑧 < ( 𝑛 − 𝑙 ) ) ) |
66 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑛 − 𝑙 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐴 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) |
67 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑛 − 𝑙 ) → ( ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) |
68 |
66 67
|
anbi12d |
⊢ ( 𝑥 = ( 𝑛 − 𝑙 ) → ( ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐴 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
69 |
65 68
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 − 𝑙 ) → ( ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ↔ ( 𝑧 < ( 𝑛 − 𝑙 ) → ( ( 𝐴 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
70 |
69
|
rspcva |
⊢ ( ( ( 𝑛 − 𝑙 ) ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( ( 𝐴 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
71 |
|
simpr |
⊢ ( ( ( 𝐴 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) |
72 |
70 71
|
syl6 |
⊢ ( ( ( 𝑛 − 𝑙 ) ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) |
73 |
72
|
ex |
⊢ ( ( 𝑛 − 𝑙 ) ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
74 |
63 64 73
|
3syl |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
75 |
74
|
com12 |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
76 |
75
|
ad4antlr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
77 |
76
|
imp |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝑧 < ( 𝑛 − 𝑙 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) ) |
79 |
62 78
|
mpd |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 0g ‘ 𝑅 ) ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( ( 𝐴 ‘ 𝑙 ) ∗ ( 0g ‘ 𝑅 ) ) ) |
81 |
|
simplr1 |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → 𝑅 ∈ Ring ) |
83 |
82
|
adantl |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → 𝑅 ∈ Ring ) |
84 |
|
simplr2 |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝐾 ∈ 𝐵 ) |
85 |
84
|
adantr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → 𝐾 ∈ 𝐵 ) |
86 |
85 29
|
anim12i |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0 ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0 ) ) |
88 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
89 |
3 2 1 88
|
coe1fvalcl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
90 |
87 89
|
syl |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
91 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
92 |
88 8 91
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
93 |
83 90 92
|
syl2anc |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
94 |
80 93
|
eqtrd |
⊢ ( ( 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( 0g ‘ 𝑅 ) ) |
95 |
|
ltnle |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( 𝑧 < 𝑙 ↔ ¬ 𝑙 ≤ 𝑧 ) ) |
96 |
23 30 95
|
syl2an |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑙 ∈ ℕ0 ) → ( 𝑧 < 𝑙 ↔ ¬ 𝑙 ≤ 𝑧 ) ) |
97 |
96
|
bicomd |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑙 ∈ ℕ0 ) → ( ¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙 ) ) |
98 |
97
|
expcom |
⊢ ( 𝑙 ∈ ℕ0 → ( 𝑧 ∈ ℕ0 → ( ¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙 ) ) ) |
99 |
98 29
|
syl11 |
⊢ ( 𝑧 ∈ ℕ0 → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( ¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙 ) ) ) |
100 |
99
|
ad4antr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( ¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙 ) ) ) |
101 |
100
|
imp |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ¬ 𝑙 ≤ 𝑧 ↔ 𝑧 < 𝑙 ) ) |
102 |
|
breq2 |
⊢ ( 𝑥 = 𝑙 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝑙 ) ) |
103 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑙 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) |
104 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑙 → ( ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐶 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) |
105 |
103 104
|
anbi12d |
⊢ ( 𝑥 = 𝑙 → ( ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) |
106 |
102 105
|
imbi12d |
⊢ ( 𝑥 = 𝑙 → ( ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ↔ ( 𝑧 < 𝑙 → ( ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
107 |
106
|
rspcva |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑧 < 𝑙 → ( ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) |
108 |
|
simpl |
⊢ ( ( ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) |
109 |
107 108
|
syl6 |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑧 < 𝑙 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) |
110 |
109
|
ex |
⊢ ( 𝑙 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑧 < 𝑙 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) |
111 |
110 29
|
syl11 |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑧 < 𝑙 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) |
112 |
111
|
ad4antlr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑧 < 𝑙 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) ) |
113 |
112
|
imp |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 < 𝑙 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) |
114 |
101 113
|
sylbid |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ¬ 𝑙 ≤ 𝑧 → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) ) |
115 |
114
|
impcom |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐴 ‘ 𝑙 ) = ( 0g ‘ 𝑅 ) ) |
116 |
115
|
oveq1d |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( ( 0g ‘ 𝑅 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) |
117 |
82
|
adantl |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → 𝑅 ∈ Ring ) |
118 |
|
simplr3 |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝐿 ∈ 𝐵 ) |
119 |
118
|
adantr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → 𝐿 ∈ 𝐵 ) |
120 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑙 ) ∈ ℕ0 ) |
121 |
119 120
|
anim12i |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( 𝐿 ∈ 𝐵 ∧ ( 𝑛 − 𝑙 ) ∈ ℕ0 ) ) |
122 |
121
|
adantl |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐿 ∈ 𝐵 ∧ ( 𝑛 − 𝑙 ) ∈ ℕ0 ) ) |
123 |
4 2 1 88
|
coe1fvalcl |
⊢ ( ( 𝐿 ∈ 𝐵 ∧ ( 𝑛 − 𝑙 ) ∈ ℕ0 ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
124 |
122 123
|
syl |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
125 |
88 8 91
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( 0g ‘ 𝑅 ) ) |
126 |
117 124 125
|
syl2anc |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 0g ‘ 𝑅 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( 0g ‘ 𝑅 ) ) |
127 |
116 126
|
eqtrd |
⊢ ( ( ¬ 𝑙 ≤ 𝑧 ∧ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( 0g ‘ 𝑅 ) ) |
128 |
94 127
|
pm2.61ian |
⊢ ( ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) ∧ 𝑙 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( 0g ‘ 𝑅 ) ) |
129 |
128
|
mpteq2dva |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
130 |
129
|
oveq2d |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
131 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
132 |
131
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
133 |
|
ovex |
⊢ ( 0 ... 𝑛 ) ∈ V |
134 |
132 133
|
jctir |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑛 ) ∈ V ) ) |
135 |
134
|
ad3antlr |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑛 ) ∈ V ) ) |
136 |
91
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑛 ) ∈ V ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
137 |
135 136
|
syl |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
138 |
130 137
|
eqtrd |
⊢ ( ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 2 · 𝑧 ) < 𝑛 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
139 |
138
|
ex |
⊢ ( ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
140 |
139
|
ralrimiva |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( 2 · 𝑧 ) < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
141 |
16 20 140
|
rspcedvd |
⊢ ( ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) ∧ ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
142 |
141
|
ex |
⊢ ( ( 𝑧 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
143 |
142
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑧 < 𝑥 → ( ( 𝐴 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝐶 ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
144 |
11 143
|
mpcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |